- Main
Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer.
- Petralia, Francesca;
- Tignor, Nicole;
- Reva, Boris;
- Koptyra, Mateusz;
- Chowdhury, Shrabanti;
- Rykunov, Dmitry;
- Krek, Azra;
- Ma, Weiping;
- Zhu, Yuankun;
- Ji, Jiayi;
- Calinawan, Anna;
- Whiteaker, Jeffrey;
- Colaprico, Antonio;
- Stathias, Vasileios;
- Omelchenko, Tatiana;
- Song, Xiaoyu;
- Raman, Pichai;
- Guo, Yiran;
- Brown, Miguel;
- Ivey, Richard;
- Szpyt, John;
- Guha Thakurta, Sanjukta;
- Gritsenko, Marina;
- Weitz, Karl;
- Lopez, Gonzalo;
- Kalayci, Selim;
- Gümüş, Zeynep;
- Yoo, Seungyeul;
- da Veiga Leprevost, Felipe;
- Chang, Hui-Yin;
- Krug, Karsten;
- Katsnelson, Lizabeth;
- Wang, Ying;
- Kennedy, Jacob;
- Voytovich, Uliana;
- Zhao, Lei;
- Gaonkar, Krutika;
- Ennis, Brian;
- Zhang, Bo;
- Baubet, Valerie;
- Tauhid, Lamiya;
- Lilly, Jena;
- Mason, Jennifer;
- Farrow, Bailey;
- Young, Nathan;
- Leary, Sarah;
- Moon, Jamie;
- Petyuk, Vladislav;
- Nazarian, Javad;
- Adappa, Nithin;
- Palmer, James;
- Lober, Robert;
- Rivero-Hinojosa, Samuel;
- Wang, Liang-Bo;
- Wang, Joshua;
- Broberg, Matilda;
- Chu, Rosalie;
- Moore, Ronald;
- Monroe, Matthew;
- Zhao, Rui;
- Smith, Richard;
- Zhu, Jun;
- Robles, Ana;
- Mesri, Mehdi;
- Boja, Emily;
- Hiltke, Tara;
- Rodriguez, Henry;
- Zhang, Bing;
- Schadt, Eric;
- Mani, D;
- Ding, Li;
- Iavarone, Antonio;
- Wiznerowicz, Maciej;
- Schürer, Stephan;
- Chen, Xi;
- Heath, Allison;
- Rokita, Jo;
- Nesvizhskii, Alexey;
- Fenyö, David;
- Rodland, Karin;
- Liu, Tao;
- Gygi, Steven;
- Paulovich, Amanda;
- Resnick, Adam;
- Storm, Phillip;
- Rood, Brian;
- Wang, Pei
- et al.
Published Web Location
https://doi.org/10.1016/j.cell.2020.10.044Abstract
We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-