Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

Evaluation and mitigation of cognitive biases in medical language models.

Abstract

Increasing interest in applying large language models (LLMs) to medicine is due in part to their impressive performance on medical exam questions. However, these exams do not capture the complexity of real patient-doctor interactions because of factors like patient compliance, experience, and cognitive bias. We hypothesized that LLMs would produce less accurate responses when faced with clinically biased questions as compared to unbiased ones. To test this, we developed the BiasMedQA dataset, which consists of 1273 USMLE questions modified to replicate common clinically relevant cognitive biases. We assessed six LLMs on BiasMedQA and found that GPT-4 stood out for its resilience to bias, in contrast to Llama 2 70B-chat and PMC Llama 13B, which showed large drops in performance. Additionally, we introduced three bias mitigation strategies, which improved but did not fully restore accuracy. Our findings highlight the need to improve LLMs robustness to cognitive biases, in order to achieve more reliable applications of LLMs in healthcare.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View