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Integrated Proteogenomic Characterization across Major 
Histological Types of Pediatric Brain Cancer

A full list of authors and affiliations appears at the end of the article.

SUMMARY

We report a comprehensive proteogenomic analysis, including whole genome sequencing, RNA 

sequencing, proteomic and phosphoproteomic profiling, of 218 tumors across 7 histologic types of 

childhood brain cancer: low grade glioma (n=93), ependymoma (32), high grade glioma (25), 

medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16) and atypical teratoid rhabdoid 

*Correspondence: RESNICK@email.chop.edu (A.C.R.), storm@email.chop.edu (P.B.S.), BROOD@childrensnational.org (B.R.R.), 
pei.wang@mssm.edu (P.W.).
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tumor (12). Proteomic data identifies common biological themes that span histologic boundaries, 

suggesting that treatments used for one histologic type may be applied effectively to other tumors 

sharing similar proteomic features. Immune landscape characterization reveals diverse tumor 

microenvironments across and within diagnoses. Proteomic data further reveal functional impacts 

of somatic mutations and CNVs not evident in transcriptomic data. Kinase-substrate association 

and co-expression network analysis identifies important biological mechanisms of tumorigenesis. 

This is the first large-scale proteogenomic analysis across traditional histologic boundaries to 

uncover foundational pediatric brain tumor biology and inform rational treatment selection.

INTRODUCTION

Pediatric brain tumors are the leading cause of cancer related deaths in children (Ostrom et 

al., 2018). While genomic techniques have begun to illuminate the pathogenesis of many 

pediatric brain tumors, there are some unique challenges that limit the translation of these 

findings into new effective therapies. Since pediatric brain tumors have a relatively low 

mutational burden (Chalmers et al., 2017; Grobner et al., 2018; Northcott et al., 2017; 

Parsons et al., 2011; Pugh et al., 2012; Robinson et al., 2012), the majority of pediatric brain 

tumors defy treatment approaches that exploit targetable genomic events. In addition, many 

pediatric brain tumors are characterized by aberrant epigenetic landscapes, but there is as yet 

no effective way to specifically target these key programmatic changes (Capper et al., 2018). 

RNA profiling has identified subgroups within histologic diagnoses and highlighted 

pathways thought to be active in these groups. But targeting these pathways has largely been 

unsuccessful. Potential explanation for this lack of translation is that these mechanisms 

reside many regulatory layers away from the primary functional element of the cell, the 

protein (Rivero-Hinojosa, 2018).

In recent years, quantitative mass spectrometry and bioinformatic analyses have matured, 

resulting in the ability to add a quantitative proteomic facet to a primarily genomic-based 

biological understanding of diseases (Clark et al., 2019; Dou et al., 2020; Gillette et al., 

2020; Mertins et al., 2016; Rivero-Hinojosa et al., 2018; Zhang et al., 2014; Zhang et al., 

2016). These efforts have shown a distinct uncoupling of RNA transcript abundance from 

protein abundance, particularly in cancer. This fact alone could account for a significant 

disconnect between genome-based biological discovery and clinical validation. Analysis of 

these integrated proteogenomic data sets has the potential to aid in the identification of new 

therapeutic avenues.

Another challenge of translating new molecular findings into therapeutic innovations is that 

the subdivision of traditional histology-based entities into molecular subgroups fragments 

patient populations into ever smaller groups creating existential challenges for clinical trial 

design. This is especially true for rare cancers such as pediatric brain tumors. One salient 

feature of proteomics is the ability to discern biology closer to cellular intent by virtue of its 

focus on the main functional moiety of the cell, the protein. Because disparate upstream 

genomic events can result in similar downstream pathways and patterns, by scrutinizing 

these resultant events, proteomics can identify common biology across histologic and 

molecular boundaries.
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In an attempt to incorporate proteomics into a biological understanding of pediatric brain 

tumors, we undertook the first large-scale comprehensive proteogenomic analysis inclusive 

of the genomics, transcriptomics, global and phosphoproteomics of a large cohort of 218 

tumor samples representing 7 distinct histologic diagnoses, including low grade glioma 

(LGG), ependymoma(EP), high grade glioma (HGG), medulloblastoma (MB), 

ganglioglioma, craniopharyngioma(CP) and atypical teratoid rhabdoid tumor (ATRT). 

Unsupervised clustering based upon the proteome revealed surprising alignments between 

subsets of tumor diagnoses previously regarded as biologically distinct and led to a number 

of insights herein described. We seek to demonstrate that the incorporation of the proteomic 

and phosphoproteomic dimensions into this large-scale multi-omic study leads to functional 

insight that will help drive translational efforts.

RESULTS

Proteogenomic analyses of pediatric brain tumor specimens

For 218 fresh frozen tumor samples from 199 patients representing 7 histologic types of 

pediatric brain tumors, we performed whole genome sequencing (WGS), RNA sequencing 

(RNAseq), quantitative proteomic and phosphoproteomic profiling. All samples were 

sourced from Children’s Hospital of Philadelphia. Figure 1A illustrates the sample 

distribution across 7 histologic types: LGG (n=93), EP (32), HGG (25), MB (22), 

ganglioglioma (18), CP (16) and ATRT (12).

For proteomic and phosphoproteomic quantitation, all 218 tissue samples were analyzed by 

liquid chromatography and triple mass spectrometry with tandem-mass-tag (TMT) isobaric 

labeling. The number of proteins and phosphosites measured per sample ranged from 4661 

to 5731 (median 5122) and 2155 to 3415 (median 2714) respectively. In total, we identified 

and quantified 8802 proteins and 18,235 phosphosites. Among them, 6429 proteins and 

4548 phosphosites were observed in more than 50% of the samples of at least one histologic 

diagnosis and were considered in the downstream analysis. In addition, 440 phosphosites 

from ischemia-induced proteins (Mertins et al., 2014) were excluded to avoid any artificial 

effect induced by variations in sample collection.

WGS and RNAseq were also performed for most samples. After quality filtering, somatic 

mutation, DNA copy number alterations and RNAseq based gene expression data were 

derived for 200, 190 and 188 tumor samples, respectively (Fig. 1B, Star Method). All 

processed proteogenomic data sets can be queried, visualized and downloaded from http://

pbt.cptac-data-view.org/.

Proteogenomic clustering of pediatric brain tumors

Consensus clustering based on global proteomic data identified eight clusters (Fig. S1A) 

with distinct survival outcomes (Fig. 1C), stemness scores, proliferation indices and pathway 

activities (Fig. 1D and Table S1). We termed the eight clusters: Ependy, Medullo, 
Aggressive, Cranio/LGG-BRAFV600E, HGG-rich, Ganglio-rich, LGG BRAFWT-rich, and 
LGG BRAFFusion-rich.
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While some clusters coincided with histologic diagnoses, such as Medullo, other clusters 

contained a mixture of different diagnoses (Figs. S1B). Firstly, the Cranio/LGG BRAFV600E 

cluster (C4) aligned a subset of CP tumors with LGG tumors harboring BRAFV600E 

mutations, while the rest CP were aligned with the LGG BRAFWT-rich cluster (C8) (Figs. 

1D, S1A). This segregation of the CP samples into two distinct clusters was also supported 

by parallel consensus clustering analysis based on phosphorylation data (Figs. S1A). 

Division of CP samples, however, was not detected based on RNA data (Fig. S1A), and the 

sample-wise correlation between proteomic and RNAseq profiles was rather low for samples 

in these two protein clusters (Fig. 1D).

While CTNNB1 mutation is an important oncogenic factor for pediatric CP (Campanini et 

al., 2010), the proteomic clusters, C4 and C8, did not distinguish CTNNB1 mutation status 

(Fig. 1E). Instead, they more closely resembled the patterns induced by BRAFV600E in LGG 

(Figs. 1D, 5A). BRAFV600E mutation, an oncogenic event for some adult CP (Brastianos et 

al., 2014), has not been previously detected in pediatric CP patients. Our findings suggest 

that a subset of pediatric CP tumors, despite their lack of BRAFV600E mutations, showed 

similar proteomic changes as those in BRAFV600E LGG tumors. This motivates the 

hypothesis that some pediatric CP might benefit from MEK inhibitor (MEKi) based 

treatment, a strategy that has been used for BRAFV600E LGG tumors (Fangusaro et al., 

2019) and has shown preclinical promise in adult CP (Apps et al., 2018). Indeed, a group of 

genes suggested to be downregulated by MEKi (Pratilas et al., 2009) were found to be 

upregulated in the CP samples from C4 (Fig. S1C). Furthermore, downstream proteins/

substrates of MEK/ERK kinases, including ERK1/2, were upregulated in these samples 

(Figs. 1E, 1F, S1C), a known consequence of BRAFV600E mutation.

In addition, central members of the AKT/mTOR pathway also showed higher kinase activity 

in C4 compared to C8 CP samples (Figs. 1E, 1F, S1C), consistent with the contrast between 

BRAFV600E and BRAFWT LGG tumors (Fig. 5B). The AKT pathway has been implicated as 

a resistance pathway emerging after RAF/ERK inhibition in BRAF driven tumors (Jain et 

al., 2017). Preclinical studies have demonstrated the value of coordinated inhibition of MEK 

and mTOR, the primary AKT effector, in LGG (Jain et al., 2017). Our findings further 

suggest the potential application of this rationale for some of the CP patients.

Note, upregulation of key MEK/ERK/AKT kinases in C4 compared to C8 are only visible 

based on kinase activity assessment using phosphoproteomic data but are not reflected in 

RNA/protein abundance, suggesting the important complementary role of phosphoproteomic 

data (Fig. S1C).

To validate TMT measurements of proteins and phosphosites of interest, targeted Mass 

Spectrometry experiments of a customized protein/phosphoprotein marker panel were 

applied to the same set of tumor samples following immuno-Multiple-Reaction-Monitoring 

(MRM) experiment protocols (Whiteaker et al., 2018). The MRM measurements of key 

players in the MEK/ERK pathways confirm the substantial differences in C4 and C8 CP 

(Fig. 1G). Moreover, these MRM assays can accurately classify the two subtypes of CP as 

reflected by their high AUC values (Fig. 1G), suggesting the feasibility of classifying these 

subtypes in clinical practice by using MRM-based assays.
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Another proteomic cluster containing a mixture of diagnoses is the Aggressive cluster, 

characterized by poor survival outcomes (Fig. 1C). EP in the Aggressive cluster were more 

similar to tumors within cluster, regardless of histology, than to the other EP in the Ependy 
cluster (Fig. S1A). Specifically, members belonging to the evolutionarily conserved 

multifunctional polymerase-associated factor 1 complex (PAF1C), including PAF1, CDC73, 

CTR9, LEO1 and RTF1, were found to be significantly upregulated in the Aggressive cluster 

compared to the Ependy cluster (Fig. S1D, S1E). PAF1C plays a vital role in gene regulation 

and has been implicated in tumorigenesis (Moniaux et al., 2006; Tomson and Arndt, 2013). 

PAF1C regulates a variety of factors involved in histone covalent modifications, 

transcription, and mRNA 3’ end processing (Karmakar et al., 2018) (Fig. S1D). These 

factors all showed upregulation patterns in the Aggressive cluster compared to the Ependy 
cluster based on global and phosphoproteomic data (Fig. S1E). Neither the segregation of 

EP into different clusters nor consistent upregulation of PAF1C members and downstream 

players were observed in RNA data (Figs. S1A, S1E).

Note, while the 9 samples from the post-mortem collection (Fig. 1B) blended well with 

other surgically obtained samples in the protein/RNA based clustering results, they grouped 

together in one phosphoproteomic cluster (Fig. S1A), suggesting caution when studying 

PTM based on post-mortem samples. To avoid any potential artificial effects, the post-

mortem samples were not considered in the downstream analyses involving 

phosphoproteomic data.

Immune infiltration in pediatric brain tumor

We performed cell type deconvolution analysis using xCell (Aran et al., 2017) based on 

RNA data to infer relative abundance of different cell types in the tumor microenvironment 

(Fig. 2A, Table S2). The inferred proportion of neuronal and microglia cells were further 

confirmed based on signatures derived from single-cell RNAseq study of glioblastoma (Fig. 

2A) (Darmanis et al., 2017). Consensus clustering based on inferred cell proportion 

identified five sets of tumors with distinct immune and stromal features: Cold-medullo, 

Cold-mixed, Neuronal, Epithelial and Hot (Fig. 2A). Comparing this to proteomic clusters, 

we observed lower immune infiltration in more aggressive proteomic clusters such as 

Aggressive, Medullo and Ependy, while higher immune infiltration in LGG BRAFWT-rich, 

LGG BRAFFusion-rich and Cranio/LGG BRAFV600E (Figs. 2D, S2A).

The Hot group, containing a mixture of LGG, HGG and ganglioglioma samples, was 

characterized by the presence of multiple types of immune cells, including macrophages, 

microglia and dendritic cells (Fig. 2A). As expected, compared to other tumors, the Hot 
cluster showed the upregulation of immune related pathways including epithelial 

mesenchymal transition (EMT) (Lou et al., 2016) (Figs. 2A, 2B). Moreover, adenosine 

producers (e.g., phosphatases ENTPD1 and NT5E), which have been shown to protect 

against inflammatory oxidative stress, inhibit immune activators and activate 

immunosuppressing cells (Chisci et al., 2017; Kordass et al., 2018), were upregulated based 

on both RNA and protein data in the Hot cluster (Figs. 2A, 2B), suggesting adenosine 

reducing therapies can be investigated for these tumors (Lakka and Rao, 2008; Leone and 

Emens, 2018; Perrot et al., 2019).
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Neuronal also contained a mixture of LGG, HGG and Ganglioglioma tumors, but was 

uniquely characterized by the upregulation of Glutamate Receptor Signaling and 

Neurotransmitter Transport pathways involved in neuron communication and activation of 

cell growth (Pereira et al., 2017; Stepulak et al., 2014)(Figs. 2A, 2B and Table S2). This 

observation may support a glutamate/glutamate-receptor mediated mechanism of glioma 

progression in these samples. Recent studies demonstrate that glutamatergic synapses exist 

between neurons and glioma cells in pediatric (Venkatesh et al., 2019) and adult 

(Venkataramani et al., 2019) HGG. Glutamate receptors can activate Ca2+/calmodulin 

dependent protein kinase II (CAMK2A/B/G/D), which engages PI3-kinase (PIK3CA) and 

signals to RAS through centaurin‐α1 (ADAP1) (Hayashi et al., 2006). Consistently, we 

found that GRIA1, CAMK2A/B/G/D, PIK3CA and ADAP1 all showed significant 

upregulation in Neuronal (Table S2), further suggesting the active role of glutamate 

signaling in the Neuronal group. In addition, high levels of glutamate can promote immune 

evasion mechanisms (Cai et al., 2018), and indeed we observed decreased gene expression 

of CD4, CD8A and macrophage related genes in Neuronal cluster as compared to the Hot 
cluster (Table S2). At the same time, the Neuronal cluster was characterized by upregulation 

of pathways of energy metabolism such as OXPHOS, Mitochondrial Protein Complex and 

Glycolysis solely based on proteomic data (Figs. 2A–C, S2C and Table S2). It has been 

reported that glutamine blockade induces divergent metabolic programs to overcome tumor 

immune evasion, and glutamine antagonism could serve as a “metabolic checkpoint” for 

tumor immunotherapy (Leone et al., 2019), which might benefit tumors like the ones in the 

Neuronal cluster.

LGG tumors, which were split into the Neuronal and Hot clusters, showed substantial tumor 

microenvironment heterogeneity (Fig. 2A). Interestingly, BRAFV600E and BRAFFusion 

events, important oncogenic drivers of LGG tumors, showed significant association with 

multiple immune signatures. In particular, APM class I genes were upregulated in both 

BRAFFusion and BRAFV600E tumors compared to wild type (Figs. 2E, 2F and Table S2). 

More careful investigation of pro-inflammatory (M1) and pro-regenerative (M2) 

macrophage and microglia signatures (Fig. S2B and Table S2) based on markers specific to 

these cell types (Dello Russo et al., 2017; Fumagalli et al., 2018; Krasemann et al., 2017) 

further suggests that M1 macrophages and M2 microglia were upregulated in BRAFFusion 

compared to wild type (Fig. 2E). The significant difference between microglia and 

macrophage polarization across BRAF statuses is further illustrated in Fig. 2G: BRAFFusion 

promoted more M2 microglia, while BRAFV600E promoted more M2 macrophages. This 

observation is in concordance with the balance between macrophage and microglia 

polarization reported for adult glioblastoma (Darmanis et al., 2017).

The Epithelial cluster, containing as expected only CP tumors which originate from 

odontogenic epithelium, was characterized by the upregulation of EMT, immune related 

pathways as well as CTLA4 and PD-1 molecules (Figs. 2A, 2B and Table S2). Therefore, 

CP could potentially benefit from immune checkpoint therapy as previously reported (Coy et 

al., 2018).

Finally, both Cold-medullo and Cold-mixed exhibited upregulation of Signaling by WNT, 

Beta Catenin TCF Complex Assembly, Regulation of Apoptosis and Proteasome. This is 
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consistent with the recent reports that tumors with active WNT Signaling were characterized 

by lower levels of immune infiltration (Luke et al., 2019). Again, these patterns of 

upregulation were observed in both Cold-medullo and Cold-mixed clusters based on 

proteomic and phosphoproteomic data but not RNA data (Figs. 2A, 2B, 2C, S2C).

Integrative proteogenomic analyses reveal functional consequences of mutation and CNV

While pediatric tumors usually have fewer genetic alterations compared to adult tumors 

(Grobner et al., 2018), a few recurrent DNA alterations were observed in this cohort (Fig. 

S3A). We first evaluated the impact of the few somatic mutations on the corresponding 

RNA/protein levels. LGG tumors with BRAFV600E mutation had significantly 

downregulated BRAF protein abundance compared to BRAFWT LGG tumors (Fig. 3A), 

while the reduction was not significant at the transcript level (Fig. S3B). CTNNB1 mutation 

resulted in elevated protein/RNA levels among CP samples, while NF1 mutation resulted in 

the downregulation of cognate protein and transcript in HGG (Figs. 3A, S3B). SMARCB1 
RNA/protein were significantly downregulated in ATRT samples compared to other 

diagnoses as expected, and the downregulation was the result of different types of DNA 

alterations, including mutation, deletion, and copy neutral LOH (Fig. S3C).

In terms of genomic instability, MB, HGG and EP tumors showed relatively higher genomic 

instability (Fig. S3A). By integrating copy number, RNA and proteomic data, we detected 

1,541 genes whose transcript and protein abundance were simultaneously influenced by their 

own CNVs in one or more diagnosis, referred to as CNV-RNA/Protein cis-cascade events 

(Fig. S3D and Table S3). In addition, for 515 of these 1,541 genes, we detected significant 

dependence between their phosphosite abundance and CNV in one or more diagnoses, 

referred to as CNV-RNA/Protein/Phospho cis-cascade events (Fig. S3D and Table S3). 

These lists of cis-cascade events facilitate the identification of important players in 

frequently amplified/deleted genome regions. One example is RABGAP1L (1q25), an EP 

CNV-RNA/Protein/Phospho cis-cascade gene (Figs. 3B, 3C), whose amplification is 

associated with GTPase activation and RAB-GTPase binding (Itoh et al., 2006) and has been 

reported to be an independent predictor of tumor progression in EP (Kilday et al., 2012). 

Another member from the RAB GTPase gene family, RAB3GAP2 (1q41), which has a key 

role in neurodevelopment (Ng and Tang, 2008), was identified to be a CNV-RNA/Protein 

cis-cascade gene for EP, MB and HGG tumors. Our analysis further pinpoints an important 

player in maintenance of glioblastoma stemness, FDPS, proximate to RABGAP1L, as a 

CNV-RNA/Protein cis-cascade gene for HGG (Abate et al., 2017; Kim et al., 2018a).

While recurrent amplification of RABGAP1L, RAB3GAP2 and FDPS were observed in all 

EP, MB, and HGG tumors, a significant influence of RABGAP1L amplification on its 

protein/phosphoprotein was only observed in EP, while FDPS was found to be a CNV/RNA/

protein cascade event only in HGG (Figs. 3B, 3C). On the other hand, for MB, only 

RAB3GAP2 is identified as a CNV-RNA/Protein cis-cascade gene. These observations 

suggest that CNV of the same genomic region could lead to different functional 

perturbations in different diagnoses.

We then studied the trans-regulatory effects of somatic mutations and CNVs on proteins and 

phosphoproteins within each diagnosis. Besides BRAF mutation/fusion in LGG (discussed 
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below), the only other profound trans-regulatory effects were detected between mutation of 

CTNNB1, which codes β-catenin, and many proteins and phosphosites in CP (Fig. 3D and 

Table S3). β-catenin is crucial for two developmental processes: establishment and 

maintenance of cell-type-specific cell-to-cell adhesion and regulation of target gene 

expression via the WNT Signaling pathway (Gao et al., 2018). As expected, CTNNB1 
mutation, which boosted β-catenin abundance, is found to be associated with upregulation of 

proteins/phosphosites related to cell-to-cell adhesion, as well as upregulation of members of 

the WNT Signaling pathway such as APC, GSK3A and GSK3B (Fig. 3D, 3E). Specifically, 

while phosphosite abundance of APC at Ser 2812 showed significant elevation in CTNNB1 
mutation cases, this upregulation was not observed based on protein abundance of APC (Fig. 

3E). It is well known that WNT signaling results in the liberation of β-catenin and its 

translocation to the nucleus where it binds to transcription factor (TCF) complexes to 

activate transcription (Fig. 3F). In our data, we observed significant association between 

RNA and protein/phosphosite abundance of TCF4, TCF25 and CTNNB1 mutation in CP. 

The interaction of β-catenin with TCF4 has been proposed as a target for the development of 

anti-cancer drugs in other tumor types (Fasolini et al., 2003). However, we observed that 

both RNA expression and phosphosite abundance of TCF4 were significantly lower in the 

CTNNB1 mutated group. Instead, both RNA and proteomic abundance of TCF25, another 

transcription factor that may play a role in cell death control (Cai et al., 2006), were 

upregulated in CTNNB1 mutated CP. These results suggest that, among this group of CP, 

downstream effects of mutation in CTNNB1 could be mediated by TCF25.

Phosphoproteomic analysis of kinase activity

Because of the tremendous appeal of kinases as drug targets, it is of great importance to 

characterize the common and differential kinase activations within and across histologies. 

CDK1 and CDK2, essential cyclin-dependent kinases promoting the G2–M transition and 

regulating G1 progression and the G1–S transition (Santamaria et al., 2007), were elevated 

in more proliferative tumors including ATRT, MB, HGG and EP based on global abundance 

and kinase activity (Figs. 4A, S4B and Table S4), the latter derived from the abundance of 

phosphorylated substrates (StarMethod). The activation of CDK1 and CDK2 in more 

proliferative tumors was also confirmed by higher correlation between their global 

abundance and kinase activity scores (Fig. 4A). To further characterize the dependence of 

individual substrates on kinases, we constructed diagnosis-specific kinase-substrate 

networks leveraging experimentally validated kinase-substrate regulation database 

(Hornbeck et al., 2015) (StarMethod). Some kinase-substrate associations of CDK1/2 were 

shared across different diagnosis (Fig. S4A). For example, the association between CDK2 

and MCM2 at Ser 139 was detected in ATRT/MB, EP, HGG and LGG. On the other hand, 

some Diagnosis-specific associations were detected, such as CDK2 and NPM1 at Ser 70 in 

HGG and LGG, and CDK2 and TERF2IP at Ser 203 in EP (Fig. S4A). All MCM2, NPM1 

and TERF2IP (RAP1) play important roles in cell proliferation (Box et al., 2016; Fei and 

Xu, 2018; Schmitt and Stork, 2001), implying diverse mechanisms used by CDK2 to 

influence cell proliferation in various diagnoses.

Another important kinase is CAMK2A (Calcium/Calmodulin Dependent Protein Kinase II 

Alpha), which is directly involved in metastatic invasion of glioma cells (Chen et al., 2011; 
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Cuddapah and Sontheimer, 2010; Shin et al., 2019). While CAMK2A was the most 

abundant in ganglioglioma, a higher correlation between its kinase activity score and protein 

abundance was observed in HGG (Fig. 4A and Table S4). The inferred kinase-substrate 

network of HGG further highlights association between CAMK2A and GJA1 (connexin 43) 

at both Ser 325 and Ser 314 (Figs. 4B and S4A). Phosphorylation of connexin 43 at Ser 325 

and Ser 314 promotes gap junction assembly between glioma and astrocytes (Cooper and 

Lampe, 2002) and drives cancer cell migration as well as glioma invasion (Behrens et al., 

2010; Hong et al., 2015). Thus, our data suggests a potential role of CAMK2A in glioma 

invasion. Moreover, in HGG, CAMK2A protein abundance was found to be associated with 

SYN1 Ser 568 and SYN1 Ser 605 (Figs. 4B and S4A), the latter increases synaptic 

transmission and regulates synaptic vesicle dynamics (Magupalli et al., 2013). This further 

aligns with the relevant role of CAMK2A in glioma invasion, as glioma cells form 

functionally active synapses with neurons and neural activity mediated by neuron-to-glioma 

synapses drives glioma invasion and growth (Venkataramani et al., 2019; Venkatesh et al., 

2019). Interestingly, the activation of CDK1/2 and CAMK2A, reflected by their elevated 

protein abundance respectively, tended to be exclusive of each other, suggesting the 

existence of two different signaling mechanisms among HGG tumors (Fig. 4C).

To further confirm the kinase activity of CDK2 and CAMK2A in HGG, we carried out 

independent TMT proteomic and phosphoproteomic experiments in an independent cohort 

of 23 pediatric and young adult HGG (StarMethod) and validated the kinase-phosphosite 

associations between aforementioned pairs (Fig. 4B). The negative correlations between 

CDK1/2 and CAMK2A protein abundance were also confirmed in this validation cohort 

(Fig. 4C), suggesting two different signaling mechanisms among HGG tumors.

Another interesting group of kinases, CDK5 and GSK3B, were upregulated in 

ganglioglioma and a subset of LGG belonging to the Ganglio-rich cluster (Fig. 4A). CDK5 

and GSK3B have been suggested to be regulators of synapse formation, neurogenesis and 

cell proliferation (Cole, 2012; Shah and Lahiri, 2017). The kinase-phospho network revealed 

interesting associations between CDK5/GSK3B and their substrates in LGG (Figs. 4D, 

S4A), such as the phosphosites of ADD2 (beta-adducin). ADD2 is highly expressed in brain 

regions associated with high plasticity (e.g., hippocampus), involved in neuronal 

morphology, and required for synaptogenesis (Bednarek and Caroni, 2011; Porro et al., 

2010). Positive associations between CDK5 and ADD2 at Ser 604, as well as GSK3B and 

ADD2 at Ser 693, reflected CDK5-dependent priming of GSK3B activity (Farghaian et al., 

2011). Moreover, it has been shown that CDK5 regulates recruitment of SYN1 to nascent 

synapses (Easley-Neal et al., 2013), and phosphorylation of SYN1 by CDK5 at Ser 553 

controls efficiency of neurotransmitter release (Qiao et al., 2014). Thus, the observed 

positive association between CDK5 and SYN1 Ser 553 in LGG might support an increase in 

synaptogenesis between glioma cells and neurons in LGG, which however needs to be 

further confirmed through functional studies. This increase also aligns with the association 

between CAMK2A1 and SYN1 at Ser 605 and Ser 568 (Figs. 4D, S4A), as phosphorylation 

of SYN1 at Ser 605 by CAMKII was shown to increase synaptic transmission (Magupalli et 

al., 2013). Furthermore, the positive association between CDK5 and STMN1 at Ser 38 

highlights the importance of STMN1-mediated synaptogenesis for pediatric gliomagenesis, 

as stathmin phosphorylation, including Ser 38, is essential for synaptic plasticity and 
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memory, and increases synaptic strength through promoting microtubule stability and 

dendritic transport of the GluA2 subunit of AMPA-type glutamate receptors to the synapse 

(Uchida et al., 2014). All these observations are in line with the findings that gliomas can 

hijack neuronal development by creating neuron–glioma synapses (Venkataramani et al., 

2019; Venkatesh et al., 2019), and link to the immune clustering results: the global 

abundance of CDK5 and GSK3B was upregulated in the subset of LGGs from the Neuronal 
immune cluster (Fig. S4C)

Insights from proteogenomic analysis of LGG

In order to help discern biological insights stemming from the frequent targetable alterations 

of BRAF in LGG, we identified proteins associated with BRAFV600E mutation and 

BRAFFusion (Table S5). Compared to BRAFWT tumors, BRAFV600E and BRAFFusion cases 

showed both common as well as alteration-type specific changes (Fig. 5A). Particularly, in 

BRAFV600E, we observed significant abundance changes of protein in the MAPK (ERK) 

signaling pathway (Fig. 5A) compared to BRAFWT tumors. MAPKs are the terminus of the 

RAS/RAF/MAPK pathway, inhibitors of which have been used to treat BRAF altered 

tumors of multiple cancer types, including brain tumors (Schreck et al., 2019). For instance, 

MEK inhibitor monotherapy recently showed promising results in low-grade pediatric 

glioma with BRAF alterations (Fangusaro et al., 2019). Investigation of an RNA expression 

based “MEK inhibitor signature” (Pratilas et al., 2009) in our data confirmed that genes 

downstream of MEK kinases are greatly upregulated in BRAFV600E as compared to the 

BRAFWT tumors (Fig. S5B), supporting the current usage of MEK inhibitor therapy for 

these LGG tumors. Moreover, RNA/protein abundance of AKT Serine/Threonine kinases 

AKT1 and AKT2, as well as RNA of AKT1S1 (Fig. 5B and Table S5) showed significant 

upregulation in BRAFV600E tumors. MRM experiments measuring AKT isoforms on same 

set of tumors further validated this upregulation (Fig. 5B). Indeed, the AKT pathway has 

been implicated as a resistance pathway emerging after RAF/MAPK inhibition in BRAF 
driven tumors via upregulation of receptor tyrosine kinases (Jain et al., 2017). Preclinical 

studies have demonstrated the value of coordinated inhibition of MEK and mTOR, the 

primary AKT effector, in LGG (Jain et al., 2017). Our findings further strengthen this 

rationale for upcoming clinical trials.

Next, we employed a network-based approach to study the impact of BRAF alterations on 

the phosphoproteome. Co-expression network analysis resulted in 18 closely connected 

modules capturing the association across phosphosites (Table S5). Interestingly, two 

modules (Figs. 5C, S5C) are significantly upregulated in BRAFV600E and BRAFFusion 

samples, respectively (Table S5). Module 1 was significantly enriched in phosphosites 

associated with MYC Targets (Fig. 5C) and G2M Checkpoint, confirming the upregulation 

of Cell-Cycle related pathways in BRAFV600E compared to BRAFWT LGG patients (Fig. 

5A). Moreover, Module 1 was significantly enriched in phosphosites regulated by AKT2 

(Fig. 5D). Specifically, it contained phosphosites of a group of Heterogeneous Nuclear 

Ribonucleoproteins, including HNRNPUL1 and HNRNPUL2 (Fig. 5C, 5D). Active AKT2 

was reported to suppress the interaction between HNRNPU and caspase-9b, causing 

inhibition of apoptosis (Vu et al., 2013). Taken together, these observations further support 

the concept of inhibiting mTOR/AKT in BRAFV600E LGG.
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On the other hand, Module 2 appeared to capture a group of phosphosites perturbed in 

BRAFFusion but not in BRAFV600E cases (Fig. S5C–E). The top druggable kinase associated 

with these phosphosites in this module is PDGFRA, which encodes a cell surface tyrosine 

kinase receptor (Fig. S5D). PDGFRA is frequently mutated/amplified in pediatric HGG, and 

has been suggested to serve as a treatment target for pediatric HGG (Koschmann et al., 

2016). Our data reveals a strikingly similar upregulation of PDGFRA protein/RNA in 

BRAFFusion samples as that in HGG tumors (Fig. S5A), suggesting the exploration of 

PDGFRA targeted treatment in BRAFFusion tumors as well.

Insights from proteogenomic analysis of HGG

Isocitrate dehydrogenases (IDHs) are enzymes that catalyze the oxidative decarboxylation of 

isocitrate, producing ɑ-ketoglutarate (KG) and CO2. Mutations of IDH1 and IDH2 proteins, 

which can be effectively targeted by drugs, have been found in ~80% of grade II and III 

astrocytomas, oligodendrogliomas, and secondary glioblastomas (Bergaggio and Piva, 

2019). These mutations however are infrequent in pediatric HGG (~11%) (Kim and Liau, 

2012), as also observed in our data. On the other hand, recent literature has reported 

prognostic and/or therapeutic roles for the wild type IDH genes/proteins in various adult 

cancers such as melanoma, glioblastoma and kidney (Bergaggio and Piva, 2019, Tanaka et 

al., 2013, Calvert et al., 2017), bringing interest to understand their roles in pediatric HGG 

tumors.

We first investigated associations between IDH proteins and overall survival (OS) of HGG 

patients. Since point mutations in histone H3.3 (H3F3A, H3K27M) has been reported to 

lead to a worse prognosis in HGG (Karremann et al., 2018), H3 status was adjusted for when 

assessing association between OS and abundance of IDH proteins (StarMethod). Strikingly, 

all IDH proteins showed positive association with improved OS among the H3WT group 

(Figs. S6A, 6A and Table S6). A parallel analysis based on RNA data detected similar 

associations between expression of IDH1/2/3A with OS (Fig. S6B). Consistently, the 

Oxidative-phosphorylation pathway, harboring IDH1/2/3, is one of the leading pathways 

whose up-regulation was significantly associated with improved OS among H3WT patients 

(Fig S6C).

While all IDH proteins showed positive correlation with OS, no correlation was observed 

between IDH1 and IDH2/3 protein abundances (Fig. 6B). Although this is not surprising, as 

IDH1 is situated in the cytosol and peroxisomes, whereas IDH2/3 are in the mitochondria, it 

implies potentially complementary information in IDH1 and IDH2/3 for prognostic 

prediction. Indeed, compensatory functions between IDH1 and IDH2 have been reported in 

acute myeloid leukemia (Zhang et al., 2019) and colorectal cancer (Koseki et al., 2015). 

These observations motivated us to evaluate the joint prognostic value of IDH proteins. In 

addition, since IDH3 proteins are highly correlated with IDH2, and IDH3 proteins are of 

relatively lower abundance compared to IDH1/2, we decided to focus on IDH1 and IDH2 to 

avoid collinearity in the analysis. Specifically, by jointly modeling IDH1 and IDH2 proteins 

in one multivariate Cox regression model, we estimated that, among H3WT HGG patients, 

the risk of death has a 23.58-fold increase, with a 95% confidence interval (CI) of [1.42, 

384.6] (Fig. 6C), if the combined abundance of IDH1 and IDH2 is 50% lower (i.e., decrease 
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of 1 in the weighted log2 abundance, StarMethod). The extremely wide CI for the hazard 

ratio of IDH1/2 score is a result of the limited sample size in the analysis (n=19). To further 

verify this finding, we performed TMT proteomics profiling experiments for an additional 

41 pediatric HGG samples including 23 from an independent patient cohort, and 18 from the 

existing study cohort with remaining tumor material (StarMethod). With this second dataset, 

we confirmed the association between the reduced expression of combined IDH1/2 protein 

abundances and shorter OS after accounting for additional confounders such as tumor 

location (Fig. 6D, 6F, S6E, StarMethod).

Unlike H3WT HGG tumors, IDH1/2 proteins showed an adverse effect on OS among H3MUT 

tumors (Figs. 6C, 6D). But due to the small number of the H3MUT tumors (n=7 and 12 in the 

discovery and second data sets respectively), further verification is warranted.

While the factors driving IDH1/2 protein abundances in these pediatric HGG tumors remain 

largely unknown, one possible factor is revealed by the CNV-RNA/Protein cis-regulation 

investigation, which identified IDH1 as a CNV-RNA/Protein cascade protein (Fig. S3D). As 

illustrated in Fig. S6D, IDH1 deletion, which was observed in about 20% of the HGG 

tumors, significantly downregulated the protein abundance of IDH1.

Moreover, to nominate potential drug targets for pediatric HGG based on new insights from 

proteogenomic data, we performed a drug connectivity analysis to identify drug candidates 

whose impact on the transcriptome and proteome is diametrically opposed to the 

characteristics identified as central to HGG biology. Because of the lack of adjacent normal 

tissue of HGG patients, we chose to derive RNA/proteomic signatures of HGG 

aggressiveness by comparing HGG and LGG tumors. We then leveraged the LINCS L1000 

transcriptomic and P100 phosphoproteomic perturbation-response databases to search for 

candidate drugs inducing effects that oppose the corresponding input (Litichevskiy et al., 

2018; Subramanian et al., 2017) (StarMethod, Table S6). CDK inhibitors were predicted to 

reverse the aggressiveness of HGG based on both RNA and phosphoproteomic data (Figs. 

6G, S6F/G, and Table S6). Consistently, the kinase activity of CDK1 and CDK2 were 

upregulated in HGG compared to LGG (Fig. 6H). MEK, proteasome and HDAC inhibitors 

were found to be significant based on RNA data alone (Figs. 6G, S6F, S6G). Although MEK 

substrates were not observed in the phosphoproteomic data of HGG samples, MAPK1 
kinase activity, downstream of MEK, was found upregulated in HGG tumors (Fig. 6H). The 

upregulation of substrates of CDK and MAPK1 proteins in HGG tumors supports that CDK 

and MEK inhibitors might be effective for HGG tumors.

Comparison between initial and recurrent tumors

Earlier work has reported distinct patterns between initial and recurrent tumors of the same 

patient (Morrissy et al., 2016). Based on proteomic and genomic profiles of 18 pairs of 

surgical samples from two distinct disease occurrences of the same patients in our cohort, 

we tried to address the question of whether the recurrent tumors should be considered as 

independent tumors during treatment evaluation.

In all 18 pairs, the recurrent/progressive (RP) disease was of the same histologic diagnosis as 

the initial (IN) tumor. RP tumors carried 0%-52% (mean 18%) of the IN tumor mutations 
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(Fig. 7A), which was lower than that of adult GBM (Cancer Genome Atlas Research, 2008) 

and LGG (Cancer Genome Atlas Research et al., 2015) (Fig. S7A). Remarkably, all three 

MB progression samples had a TP53 mutation that was absent in their paired primary 

tumors (Fig. 7A), consistent with the observation by Morrissy et al., 2016. In addition, there 

was an increase in chromosome arm aberrations in the RP samples, with the number of 

breakpoints increasing on average from 32 to 53 (Fig. 7A). In contrast, in adult GBM and 

LGG tumors, CNV events from primary tumors were similar as that in their recurrences 

(Fig. S7A). Proteomic profiles also revealed differences between RP and IN tumors. In fact, 

most primary and recurrent samples were classified into different proteomic clusters (Fig. 

7A). As an example, one BRAFWT LGG case (pair 173.2154), with BRAF being wild type 

in both its IN and RP tumors, had its IN tumor allocated to the LGG BRAFWT-rich 
proteomic cluster and the RP tumor allocated to the Cranio/LGG BRAFV600E cluster. 

Consistent with the characteristics of these two proteomic clusters, we observed the 

upregulation of RNA Transcription and splicing/EMT and Coagulation and downregulation 

of Gap junction in the RP tumors as compared to their IN counterparts (Figs. 1D, 7A, and 

Table S7). Consistently with the allocation of RP tumor to the Cranio/LGG BRAFV600E 

cluster, a higher kinase activity for ERK1/ERK2 was observed in RP tumor compared to IN 

tumor (Fig. 7C), suggesting that a MEK inhibitor therapy might be more beneficial for the 

RP tumor. Another LGG case (pair 350.944) had the IN tumor allocated to Cranio/LGG 
BRAFV600E, while the RP sample allocated to the LGG BRAFWT-rich cluster, which 

resulted in opposite trend in pathway activities followed by a reversed trend in the activity of 

ERK1/ERK2 (Figs. 7A, 7C). These changes in pathway activation highlight the need for de 

novo characterization of recurrent cases which might impact on treatment decisions.

We also investigated the correlation between IN and RP proteome profile pairs (Figs. 7B, 

S7B). The fact that a good number of primary-recurrent pairs were not highly correlated 

with each other at the proteomic level supports the idea that recurrence (or progression) of a 

tumor could have different tumorigenesis mechanisms. Based upon these observations, an 

approach that assesses the molecular properties of recurrent events independent of the initial 

tumor seems to be warranted.

DISCUSSION

This study represents the very first attempt to perform a large scale of proteogenomic 

integrative analysis for multiple distinct pediatric brain tumor diagnoses in an effort to 

discover new effective targeted therapies. High quality genomic, transcriptomic, proteomic 

and phosphoproteomic data were generated as a public resource from a retrospective cohort 

of 218 frozen tissue samples collected by a single institution.

Although histologic diagnosis remains the cornerstone of classifying tumors into therapeutic 

categories, it is now well recognized that molecular subgroups within histologically similar 

tumors can be identified on the basis of transcriptomics, genomics and methylomics. Our 

study is based on the recognition that proteomics/phosphoproteomics needs to be integrated 

with other omics to gain an improved system biology view of molecular subgroups. In 

addition, we advocate the importance of characterizing biological themes that cross 

histologic boundaries and unite individual tumors of disparate histologies and cells of origin, 
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because such insights can lead to new extension of treatment shown to be effective in one 

type of tumor to be used on other histologically disparate tumors sharing the same proteomic 

features. For example, our proteomic/phosphoproteomic data clustering analyses revealed 

two distinct subgroups of pediatric CP, with one subgroup showing strikingly similar 

proteomic/phosphoproteomic characteristics as pediatric LGG BRAFV600E tumors. This 

observation suggests the potential use of MEK/MAPK inhibitors in a subset of pediatric CP, 

which currently has no robust chemotherapeutic options.

The existence of two subgroups of pediatric CP, however, is not evident from RNA data. 

Similarly, we observed profound discordance between RNA and protein abundance in other 

histologies, such as EP and LGG. The low/moderate RNA-protein correlation observed in 

this project is consistent with other large scale proteogenomic projects (Clark et al., 2019; 

Dou et al., 2020; Gillette et al., 2020). Multiple factors, such as protein turnover and 

selective translation, contribute to the low correlation between RNA and protein abundance 

(Clark et al., 2019; Dou et al., 2020). Interestingly, more aggressive tumors tend to show 

increased protein-RNA correlation, a phenomenon observed across multiple cancer 

proteogenomic studies (Clark et al., 2019; Dou et al., 2020). One possible explanation is that 

aggressive tumors often have high proliferation and the boosted translation activities in 

highly proliferative (tumor) cells result in more correlated RNA and protein signals. Thus, 

studying the proteome reveals insights not evident from RNA-based analysis alone.

There is also significant value in the integration of large scale proteomic and genomic data 

to identify the ramifications of genomic events on biological function. A good illustration of 

this contribution is the ability to discern at the protein level the cis effects of copy number 

alterations by tracking the cascade of abundance from gene dose to transcript level to 

protein/phosphosite abundance. In this way, the relevant genes in a chromosomal region with 

altered copy number can be identified for validation of their biologic contribution (e.g., 

RAGBAP1L in EP and FDPS in HGG with 1q gain).

It must be noted that a clear eyed view of the proteomic contribution needs to acknowledge a 

presumed equivalence between abundance and activity. However, the investigation of kinase 

activity based on phosphoproteomics showed that protein abundance can be reduced in 

active signaling pathways (e.g., ERK1/3 in CP), which could happen due to feedback loops 

in many complicated regulatory processes, suggesting the important role of 

phosphoproteomics data for characterizing pathway activities.

Many molecularly targeted agents have now been sufficiently characterized in terms of their 

safety and mechanisms of action to allow for combinations of these agents to enter clinical 

trials. The selective targeting of multiple kinase nodes within these networks represent a 

common strategy to construct more effective treatments while leaving fewer redundant 

escape routes for the tumor cell. Concurrently targeting the MEK and mTOR pathways in 

RAF activated tumors is a strategy that has emerged from investigations of resistance 

pathways resulting from RAF/MAPK inhibition. Our characterization of proteome and 

phosphoproteome changes due to BRAF aberrations lends further rationale to this approach 

in LGG where resistance per se is not an issue but durability of response after treatment 

cessation is.
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The retrospective study design enabled us to access follow up clinical data, including 

outcomes. This strategy also allowed us to study rare diagnoses and compare primary and 

recurrent tumors from the same patients. One interesting finding was that the protein 

abundances of the wild type IDH1/2 are prognostic in HGG tumors without H3K27M 

mutation. In addition, by comparing primary and recurrent specimens, we were able to 

discern significant differences between these paired specimens. The shifts in underlying 

biology accompanying tumor recurrence necessitate independent assessment and therapeutic 

decisions for those recurrent tumors.

This project represents a significant advance in the biological interrogation of pediatric brain 

tumors at multiple levels of biological control and across traditional histologic boundaries. 

While the limited sample sizes of some histologies pose a significant limitation on certain 

investigations, as the first proteogenomic characterization of such histologies, the data and 

analytical results from this project serve as a valuable resource. Importantly, it is the result of 

a necessarily expansive partnership between children’s hospitals; their patients and families; 

philanthropic and federal funding; and physician scientists and computational biologists. 

Such endeavors demonstrate the potential of large scale proteogenomic science and the 

power of inclusive collaboration to tackle a pervasive threat to our children, pediatric brain 

tumors.

Limitations and Future Directions

While this project represents the most comprehensive multi-omic analysis of pediatric brain 

tumors ever undertaken, there are nevertheless a number of limitations that are the result of 

the rarity of the tumor types studied and the nature of the samples available. 1) There are 

additional layers of cellular regulation not included in this initiative such as methylation 

profiling, histone mark profiling, ribo-seq, metabolomics, and acetyl-proteomics. 2) This 

study was structured within tissue access limitations to provide the ability to discern 

common biology across major histologic types of pediatric brain cancer. In so doing, we 

sacrificed the ability to perform in depth proteomic analyses within the tumor types that 

were represented by smaller sample sizes. A future study gathering larger cohorts of the less 

common brain tumor types would be instructive in identifying the biology that is unique to 

those tumors. 3) This study leveraged retrospective tissue collection which allowed for the 

analysis of survival outcome and initial/progressive tumor pairs as well as making it feasible 

to study rare tumors. The cost of this approach however was that the samples would not be 

fully exploited for phospho-proteomics and our phosphosite data, while significant and high 

quality considering the amount of tissue available, would have been deeper if we had 

samples that had been prospectively acquired with a phospho-proteomics specific collection 

protocol.

While acknowledging these limitations, we can also see some tantalizing future possibilities 

made more clear by the findings of this project. 1) Our study demonstrates the ability of 

proteomics, phospho-proteomics and kinase activity scores to elucidate active signaling 

processes within tumors. Applying these capabilities to tissue samples in a clinical trial 

context could yield valuable information regarding the biology of individual tumors that 

respond to a given therapy. 2) As these determinant proteomic signatures are identified, 
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MRM signatures can be developed to identify patients in real time whose tumors display 

particular biologic features and thus may respond to a treatment. 3) Histologically similar 

tumors are frequently treated differently in pediatric and adult settings. While they often 

differ in their genomic features, this study has shown that they do not always drive biology. 

A unique opportunity building off of this work will be to use proteomic platforms to 

interrogate tumors whose incidence spans a large age range in order to answer questions 

regarding how biology changes across the spectrum and whether treatments can be realigned 

for maximum benefit. In summary, this large multi-omics study of pediatric brain tumors 

represents an entrée for the integration of proteomics into data science modelling of 

pediatric cancer and as such, it sets the stage for more applied research to come.

STAR METHOD

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient selection for the discovery cohort—The samples were obtained from the 

Children’s Brain Tumor Tissue Consortium (CBTTC) at the Children’s Hospital of 

Philadelphia (CHOP). The patient selection was built based on specimen availability and 

defined two broad classes of tumors: (1) High grade tumors driven by epigenetic 

dysregulation (HGG, DIPG, ATRT and/or other embryonal tumors) and (2) Low grade 

tumors defined by receptor-tyrosine kinase and MAPK signaling alterations including kinase 

fusions. Additional associated clinical determinants for cohort selection included: (A) Tumor 

histologies for which there is more than one therapeutic standard of care and for which a 

multidimensional proteogenomic analysis could further inform an assessment of therapeutic 

response; (B) Tumor histologies for which genomic alterations and/or classification have 

failed to provide differential prognosis; (C) Tumor cohorts for which comprehensive 

profiling could inform the course of metastasis. These considerations led to the selection of 

226 samples from 204 pediatric subjects treated surgically and clinically at the Children’s 

Hospital of Philadelphia for whom deep longitudinal, clinical data is available.

Sample collection for the discovery cohort—Samples were collected at the time of 

surgery (217 samples) or autopsy (9 samples), flash-frozen, and stored in BioRC 

(Biorepository Resource Center) at Children’s Hospital of Philadelphia. Frozen tissue pieces 

~75mg were cut off using disposable scalpels on dry ice and delivered to Fred Hutchinson 

Cancer Research Center for sample preparation for proteomics profiling. ~20 mg frozen 

tissue and up to 0.4–1ml of blood was used for nucleic acid extractions, which were 

performed at the Biorepository Resource Center at Children’s Hospital of Philadelphia.

Sample collection for the HGG validation study—For the validation studies, the 

specimens from 41 patient subjects were collected through Children’s Brain Tumor Tissue 

Consortium (CBTTC) sites including Children’s Hospital of Philadelphia (CHOP), Seattle 

Children’s Hospital, Meyer Children’s Hospital, UCSF Benioff Children’s Hospital, 

University of Pittsburgh, Lurie Children’s Hospital, Children’s National Medical Center) 

and through the HUP-CHOP Neurosurgery Tumor Tissue Bank Collaborative at the Hospital 

of University of Pennsylvania. Among the 41, 18 were part of the discovery cohort who had 

remaining tumor materials. All samples were fresh frozen collected at the time of surgery, 
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shipped and stored in BioRC (Biorepository Resource Center) at Children’s Hospital of 

Philadelphia. ~30mg tissue pieces were cut/chipped off using disposable scalpels on dry ice 

and delivered to Fred Hutchinson Cancer Research Center for sample preparation for 

proteomics profiling.

METHOD DETAILS

Nucleic acid extractions, WGS and RNAseq—Tissues were lysed with Qiagen 

TissueLyser II (Qiagen) using 5 mm steel beads (cat# 69989, Qiagen) 2×30 sec at 18Hz 

settings, and processed with CHCl3 extraction and run on the QiaCube automated platform 

(Qiagen) using the AllPrep DNA/RNA/miRNA Universal kit (cat# 80224, Qiagen). Thawed 

blood was RNase A (cat#, 19101, Qiagen) treated and processed using the Qiagen 

QIAsymphony automated platform (Qiagen) using the QIAsymphony DSP DNA Midi Kit 

(cat# 937255, Qiagen). DNA and RNA quantity and quality was assessed by PerkinElmer 

DropletQuant UV-VIS spectrophotometer (PerkinElmer) and an Agilent 4200 TapeStation 

(Agilent, USA) for RINe and DINe (RNA Integrity Number equivalent and DNA Integrity 

Number equivalent respectively). Library preparation and sequencing was performed by the 

NantHealth sequencing center. Briefly, DNA sequencing libraries were prepared for both 

tumor tissue and matched-germline (blood) DNA using the KAPA Hyper prep kit (cat# 

KK8541, Roche); Whole genome sequencing (WGS) was performed at an average coverage 

of 60X for tumor samples and 30X for matched-germline. The panel tumor sample was 

sequenced to 470X and the normal panel sample was sequenced to 308X. Tumor RNA-Seq 

libraries were prepared using KAPA Stranded RNA-Seq with RiboErase kit (cat# KK8484, 

Roche). RNA samples were sequenced to an average of 200M reads. All sequencing was 

performed on the Illumina HiSeq platform (X/400) (Illumina) with 2 × 150bp read length.

Somatic Mutation and CNV calling—Strelka2 (Kim et al., 2018b) v2.9.3 was run for 

canonical chromosomes (chr1–22, X,Y,M) using default parameters and the resulting VCF 

was filtered for PASS variants. Gene level mutation status were summarized based on 

somatic mutations detected in coding regions, having minimum sequencing depth of 30, and 

minimum alternative variant count of 5.

CNVkit v. 2.9.3 (Talevich et al., 2016) was run in batch wgs mode, paired tumor-normal, 

using the hg38 annotation reference from UCSC (http://hgdownload.soe.ucsc.edu/

goldenPath/hg38/database/refFlat.txt.gz). All output files, such as seg, gain/loss, and scatter/

diagram plots were generated using CNVkit’s export and other built-in functions.

RNAseq data preprocessing—STAR v2.6.1d (Dobin et al., 2013) was used to align 

paired-end RNA-seq reads against the ENSEMBL GENCODE 27 “Comprehensive gene 

annotation” reference (https://www.gencodegenes.org/human/release_27.html). RSEM 

v1.3.1 (Li and Dewey, 2011) was used to generate both FPKM and TPM transcript- and 

gene-level expression values. Then, log2(x+1) transform was applied and samples with 

replicates were averaged.
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Proteomic experiments for Discovery Cohort

11-Plex Preparation: Sample preparation for MS analysis was performed as described 

previously (Navarrete-Perea et al., 2018). Lysates were prepared from 226 Cryo-pulverized 

human Pediatric Brain Tumor samples in lysis buffer (6M Urea, 25 mM Tris, pH8.0, 1 mM 

EDTA, 1 mM EGTA, Sigma Protease Inhibitor Cat# P8340, Sigma Phosphatase Cocktail 

Cat# P5726, Sigma Phosphatase Cocktail Cat# P0044) supplied by Fred Hutch. Lysates 

were reduced with 5 mM neutralized TCEP (Pierce, #77720) for 15 min., alkylated with 10 

mM Iodoacetamide (Sigma, #A3221) for 30 minutes in the dark and quenched with 5 mM 

Dithiothreitol (Thermo Scientific, #20291) for 15 mins. Protein was precipitated with 

methanol-chloroform, and the protein pellet was resuspended in 200 mM EPPS (pH 8.0). 

The samples were digested sequentially with Lys-C protease (Wako, 129–02541, 2 mg/mL 

Stock) at a 100:1 protein-to-protease ratio with constant shaking overnight at room 

temperature followed by Trypsin (Pierce, 90305, 1 mg/mL stock) digestion at a 100:1 

protein-to-protease ratio for another 6 h at 37°C. Digested peptides were assayed for peptide 

concentration with Pierce™ Quantitative Colorimetric Peptide Assay (#23275) as per 

Manufacturer’s protocol.

11-plex Experimental Layout: Proteome and Phosphoproteome analysis of pediatric brain 

cancer samples were structured as TMT11-plex experiments. 226 unique samples plus a few 

replicates and QC samples were arranged in twenty-three 11-plex experiments with 10 

individual samples occupying the first 10 channels of each experiment and the 11th channel 

being “Bridge Channel” i.e. Common Reference Sample, used for quantitative comparison 

across all sample sets. To prepare the bridge channel which broadly represents the 

population of pediatric brain cancer samples in our experiment, digested peptides from 

indicated samples were pooled together.

TMT Labeling of Peptides and Quality Check: About 100 μg of digested peptides per 

sample were labeled with TMT11-plex reagent according to the manufacturer’s instructions 

(Thermo Scientific, Pierce Biotechnology, Germany). About 2 μg of each sample from each 

11-plex experiment was removed and combined in 100 μl of 1% formic acid (FA) for a 

quality control check. The remaining samples were frozen immediately at −80°C for future 

quenching and HPLC fractionation. The combined samples in 100 μl of 1% FA from each 

11-plex experiment were desalted by StageTip containing 4 small (0.9 mm) discs of 3M™ 

Empore™ C18 material following standard procedure. Eluted material was dried by 

speedvac, resuspended in 5% ACN/5% FA and analyzed by a mass spectrometer to check (a) 

digestion efficiency, (b) labeling efficiency & (c) summed signal-to-noise ratios among 

samples. As a standard of quality check (QC), minimum of 97% labeled MS/MS spectra, a 

maximum of 5% missed cleavage rate, and summed signal-to-noise ratio variations of <1.5-

fold within each plex were required to proceed further. Following successful QC checks, 

unwanted TMT labeling of tyrosine residues was reversed with a final concentration of 

~0.3% (v/v) hydroxylamine (Sigma, 467804, 50% stock) for 15 mins and finally quenched 

with 50% TFA to a final concentration of ~0.5% (v/v). Labeled peptides from each of the 

twenty three 11-plex experiments were combined into 23 samples, acidified, and 

subsequently desalted on C18 Sep-Pak columns. Eluates were dried by SpeedVac in 

preparation for Phosphopeptide Enrichment.
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Phosphopeptide Enrichment: High-Select™ Fe-NTA Phosphopeptide Enrichment Kits 

(Thermo Scientific™; #A32992) were used for phosphopeptide enrichment step (“mini-

phos”) as per protocol described (Navarrete-Perea et al., 2018). Lyophilized labelled peptide 

sample was completely dissolved in 200 μL of Binding/Wash buffer with vortexing, and pH 

was confirmed to be below 3. Samples were loaded onto spin columns equilibrated per 

Manufacturer`s method and mixed by gentle tapping until the resin was in suspension. 

Samples were incubated for 30 minutes at room temperature with gentle mixing every 5 

minutes. Following incubation, the spin columns were placed in a microfuge tube, 

centrifuged at 1000×g for 30 seconds, and washed thrice with a Binding/Wash buffer. All 

flow-through fractions were collected in the same tube, desalted, dried, resuspended and 

directed to basic-pH HPLC for global proteome analysis. Phosphopeptide-bound spin 

columns were placed in a new microfuge tube, containing 1% FA and Phosphopeptides were 

eluted with an Elution buffer and dried immediately by speedvac. For phosphoproteome 

analysis, phosphopeptide enriched samples were resuspended in 1% FA, desalted by stage 

tip and eluted into Agilent deactivated glass vial inserts, dried by speedvac and finally 

phosphopeptide enriched samples were resuspended with 10 μL of 5% FA and made ready 

to be analyzed by LC-MS/MS analysis.

Offline fractionation of peptides: To reduce sample complexity, peptide samples were 

separated by high pH reversed phase (RP) fractionation. Phosphopeptide Flow-Through 

fractions were checked for pH (pH < 3) and desalted on C18 Sep-Pak columns. Eluates were 

dried in a Speed Vacuum Concentrator, reconstituted in 500 μL of Buffer A (10 mM 

ammonium bicarbonate, 5% Acetonitrile, pH 8), loaded onto an Agilent 300Extend C18 

column (3.5 μm bead size, 4.6 mm ID and 220 mm long), and separated on an Agilent 1200 

HPLC instrument at a flow rate of 0.6 mL/min with a 60 min linear gradient from 13% to 

42% buffer B (10 mM ammonium bicarbonate, 90% ACN, pH 8) into a total of 96 fractions. 

Each fraction contained ~500uL, at ~37 seconds per fraction. All 96 fractions were 

consolidated into 12 final fractions by column, desalted with stage-tip, resuspended with 10 

μL of 5% ACN - 5% FA and made ready to be analyzed by LC-MS/MS analysis.

Mass Spectrometry (MS) Instrument: Global proteome analyses were performed on an 

Orbitrap Fusion™ Tribrid™ Mass Spectrometer and phosphoproteome analyses were 

performed on an Orbitrap Fusion™ Lumos™ Tribrid™ Mass Spectrometer (Thermo 

Scientific™) both in-line with a NanoSpray Flex NG ion source using MS3-based TMT 

centric mass spectrometer method. Both the instruments are online with a Liquid 

Chromatography System (EASY-nLC™ 1200 System).

Online Liquid Chromatography: Online separation was performed on a nano-flow 

UHPLC EASY-nLC™ 1200 system (Thermo Scientific™). In this set up, the LC system with 

a column in (IDxL 20 mm × 550 mm; LC 560) from sample valve and a column out (IDxL 

75 mm × 550 mm; LC 562) to waste valve, a Fused Silica Capillary Tubing, that delivers 

sample to MS were connected via a stainless-steel cross union (Micro-Cross Assay-SS 

360μm UH-906/ Western Analytical products). A platinum wire was used to deliver 

electrospray source voltage. The column was heated to 60°C using a column heater sleeve 

(Phoenix-ST) to prevent over-pressuring of columns during UHPLC separation. The 
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capillary tubing (Inner Diameter: 100μm, Outer Diameter: 375μm) was pulled to an opening 

of 10 mm and packed in-house with 2.6 mm beads (90 A Pore diameter, Thermo Scientific) 

slurry made in Buffer B (90% Acetonitrile, 0.1% FA). Each analysis, ~1 mg of peptide in a 

1–5 ml injection volume based on the sample dilution, and for each Phosphoproteome 

sample in a 5 ml, were loaded onto the column in Mobile phase, comprised of 0.1% FA 

(Buffer A). LC-MS/MS method consisted of an initial 10 min column-equilibration 

procedure and a 20 min sample-loading procedure, both at 800 bar. For global proteome 

analyses, the peptides were separated using a 150 min gradient of 5 to 42% Acetonitrile in 

0.1% FA and respective flow rate was adjusted to separate the fraction within a pressure 

difference of 300 – 400 bar. Phosphopeptides were separated over 160 min with gradient of 

3 to 30 % Acetonitrile in 0.1% FA.

Mass Spectrometry Analyses: For data-dependent experiments (MS2 and MS3), all 

instrument operational parameters were specified through the instrument method editor. 

Data-dependent acquisition was performed using Xcalibur v2.1 software in positive ion 

mode at a spray voltage of 2.6 kV and 300oC ion transfer tube temperature. For 276 Peptide 

fractions analyses, MS1 Spectra was detected with Orbitrap at a resolution of 120K, scan 

range (m/z) being 350 – 1350 and AGC target being 1.0e6 with 50 ms maximum ion 

injection time. For MS2 analysis, top ten precursors were selected with peptide as 

monoisotopic peak determination, intensity threshold of 1.0e3, and charge state screening 

was enabled to include only precursor charge states 2–6. Peptides that triggered MS/MS 

scans were dynamically excluded from further MS/MS scans for 90 sec, with a ± 10 ppm 

mass tolerance. Perform dependent scan on single charge state per precursor only and 

Exclude within the cycle were enabled. In data-dependent charge specific MS2 analysis, 

ions were first isolated by Quadruple with an isolation window of 0.7 or 0.5 (based on 

instruments used) and activated at ion Trap with CID collision Energy being 35 % in 10 ms 

and activation Q of 0.25. Ion trap detection were set to normal scan range mode with rapid 

ion trap scan rate, 9.0e3 AGC target and 80 ms ion injection time. Following the acquisition 

of each MS2 fragment ion, precursors were selected with a mass range (m/z) between 400 – 

2000 with a mass exclusion width 50 (low) and 5 (high). About 10 precursor fragment ions 

were simultaneously isolated by SPS selection at a time for every MS3 precursor population, 

which then fragmented by HCD with HCD collision energy of 55% and fragmented reporter 

ions with a normal scan range mode were analyzed in Orbitrap at a resolution of 50K, AGC 

Target 1.0e5 and 120 ms maximum ion injection time. To further minimize the influence of 

co-eluting species, peptides with isolation specificities less than 1.2 for + 2 charge, 1.0 for + 

3 charge and 0.8 for 4 – 6 charge.

Each of the 23 Phosphopeptide enriched samples were directed to both CID and High 

Resolution HCD activation using similar multinotch MS3-based TMT methods. For CID 

activation, both multistage activation and injections for all available parallelization time 

were enabled with ion trap scan rate set to Turbo and neutral loss mass to 97.9763. For HCD 

activation during MS2 analysis, HCD collision energy was set to 32%. Both CID and HCD 

activation are considered as two fractions from each of the 23 Phosphopeptides enriched 

samples, totaling 46 Peptide fractions.
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Protein Identification and Quantification—Proteomics processing of whole proteome 

and phosphopeptide-enriched datasets was performed as described previously (Clark et al., 

2019; Djomehri et al., 2020). MSFragger version 20190628 (Kong et al., 2017) was used to 

search a CPTAC harmonized RefSeq protein sequence database appended with an equal 

number of decoy sequences. MS/MS spectra were searched using a precursor-ion mass 

tolerance of 20 ppm, fragment mass tolerance of 0.7 Da, and allowing C12/C13 isotope 

errors (-1/0/1/2/3 for global, and 0/1/2/3 for phosphopeptide-enriched). Cysteine 

carbamidomethylation (+57.0215) and lysine TMT labeling (+229.1629) were specified as 

fixed modifications, and methionine oxidation (+15.9949), N-terminal protein acetylation 

(+42.0106), and TMT labeling of the peptide N terminus. For the whole proteome database 

search, TMT labeling on Serine residues was also specified as a variable modification. The 

search was restricted to fully tryptic peptides, allowing up to two missed cleavage sites. 

Phosphopeptide-enriched searches also included the phosphorylation modification of serine, 

threonine, and tyrosine residues (+79.9663). The search results were then processed using 

the Philosopher toolkit version v1.2.3 (da Veiga Leprevost et al., 2020), including 

PeptideProphet (Keller et al., 2002), PTMProphet (Shteynberg et al., 2019), and 

ProteinProphet (Nesvizhskii et al., 2003). The data was filtered to 1% PSM-level (for each 

11-plex), and 1% protein-level (global) FDR using Philosopher filter command. TMT-

Integrator version v1.0.4 (http://tmt-integrator.nesvilab.org/) was used for generation of 

quantification matrices as described previously (Clark et al., 2019; Djomehri et al., 2020), 

except its parameters were adjusted to process 11 channels, a minimum peptide probability 

of 0.5 for quantification, and minimum site localization probability of 0.75 (phosphopeptide-

enriched datasets only). Quantification results (log2 ratios) were summarized at protein and 

gene levels, and for phosphopeptide enriched data also at the site-level.

Preprocessing of TMT proteomic data—8802 unique genes and 18235 phosphosites 

were identified and quantified from the global proteomic and phopshoproteomic 

experiments. The Global normalization were performed on gene-level abundance matrix 

(log2 ratio) for global proteomic and site-level abundance matrix (log2 ratio) for 

phosphoproteomic data. Specifically, each sample were shifted to have the same median, and 

scaled to have the same median absolute deviation.

We then applied an ‘Intra TMT-multiplex t-test’ to detect and remove outlier TMT 

multiplexes for each protein/phosphosite. For each TMT multiplex, we performed t-test of 

the protein/phosphosite abundance of samples inside against the protein/phosphosite 

abundance of samples outside the multiplex. TMT multiplexes with a p-value lower than 

10e-7 were flagged as outliers and removed from the dataset. Accordingly, a total of 164 and 

156 multiplexes or 1612 and 1557 data points were removed in the global protein abundance 

and phosphosite datasets respectively.

Before performing any downstream analysis, we applied diagnosis-specific batch correction 

on both global and phospho abundance to remove the technical difference between different 

TMT 10-plex. For each data type, batch correction was performed on the subset of markers 

with more than 50% observed in at least one of the subtypes. After filtering markers with 

missing rates >50% in all subtypes, there were 6429 genes and 4988 phosphosites with an 
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overall missing rates of 20.2% and 40.8% for the diagnosis-wide global protein and phospho 

abundance datasets respectively.

As a first step to batch correction, we performed KNN imputation separately on the data 

from each diagnosis using the “impute.knn” function from the “impute” R package. After 

merging the data across diagnoses, we then applied the R tool ComBat, with the tumor 

diagnosis as covariate to remove batch effects (Johnson et al., 2007). Finally, we replaced 

the missing data structure from before KNN imputation.

For the formal imputation of missing values, we adopted a novel tool DreamAI (Ma et al., 

2020) (https://github.com/WangLab-MSSM/DreamAI), an ensemble algorithm developed 

during the NCI-CPTAC Dream Proteomics Imputation Challenge (https://

www.synapse.org/#!Synapse:syn8228304/wiki/413428). Imputation was done: 1) separately 

on the data from each tumor type, and 2) across the entire dataset including all tumors. 

Tumor-subtype specific imputation was done for the subset of markers with missing <50% 

in each subtype. Subtype-wide imputation was done for the subset of markers that appeared 

in at least 50% of samples in any one subtype (the same set of markers used in the batch 

correction). Finally, for the phospho abundance dataset, we filtered out 440 additional 

markers associated with cold-regulated ischemia genes.

QC check for proteogenomic profiles—Integration of these multi-layers of omics data 

enhances our understanding about complex molecular mechanisms in biological systems. 

However, unintended errors in annotations and sample sables often occur in generation or 

management of large-scale data (Alyass et al., 2015). Since integrative analysis based on 

error-containing data could provide wrong scientific conclusions, data quality and sample-

labeling check is a critical QC step before actual integration. In this study, we performed 

systematic quality control procedure to confirm that all annotations in clinical information 

and sample names are consistent as annotated.

1. Diagnosis type check and filtering Among the 226 samples, 7 samples were 

identified to have either incorrect or ambiguous histologic diagnosis based on an 

independent clinical report review and were removed from the downstream 

analysis.

2. Gender label check Expression of two gender representative genes, XIST and 

RPS4Y1 from chromosomes X and Y, respectively (Staedtler et al., 2013), were 

used to infer genders based on RNAseq data.

3. Genotype mapping check based on WGS and RNAseq data To ensure the highest 

data quality, genotype mapping analysis was performed to flag samples with 

potential contamination, low sequencing quality, or sample labelling issues. 

Specifically, using NGSCheckMate (Lee et al., 2017), the genotype correlation 

were compared between paired tumor WGS vs normal WGS as well as tumor 

WGS vs tumor RNAseq profiles for all patients. The tool utilized 20,000+ 

common SNP sites based on dbSNP138, and a stringent cutoff of 0.8 was applied 

to flag low-quality or contaminated samples.
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4. Proteo-genomic sample labelling mapping We employed similar procedures 

applied to our recent kidney cancer study (Clark et al., 2019) to confirm that 

RNAseq, global proteomics, and phosphoproteomic data with the same labels 

were from the same individuals (Yoo et al., 2014). Cis pairs among global 

proteomics, phosphosite proteomic, and RNAseq data were determined based on 

their correlation strength (cis correlation>0.6) and 832, 1341, and 521 pairs were 

selected for global-phosphosite, RNAseq-global, and RNAseq-phosphosite 

alignments, respectively. Then the values of the selected features (genes or 

proteins) were rank-transformed to evaluate sample-wise similarity scores. If two 

profiles of a sample are matched, the similarity score between the two profiles is 

expected to be significantly higher than the score of random pairs. Based on this 

approach, we identified potentially mis-aligned samples from pairwise alignment 

among global proteomic, phosphoproteomic, and RNAseq data.

For flagged samples, same subject tumor tissue and blood specimen DNA was 

further extracted and sent to Guardian Forensic Sciences (Abington, PA) for 

short tandem repeat (STR) testing using the GenePrint 24 assay (Promega, 

#B1870). Pattern of amplified polymorphic loci was used for matching analysis 

between tissue and blood for each case.

After filtering data files according to all above quality assessments, the resulting data sets 

consisting of 218 global proteomics profiles, 217 phosphoproteomics profiles, 188 RNAseq 

profiles, 200 mutation profiles and 190 CNV profiles were considered for downstream 

analyses (Table S1).

Proteomics experiment of the validation cohort.

Protein Extraction and Lys-C/Trypsin Tandem Digestion: Approximately 50 mg of each 

of brain tumor tissues were cryopulverized and lysed separately in 800 μL of lysis buffer (6 

M urea, 25 mM Tris, pH 8.0, 1 mM EDTA, 1 mM EGTA, 1:100 v/v Sigma protease 

inhibitor, 1:100 v/v Sigma phosphatase inhibitor cocktail 2, and 1:100 v/v Sigma 

phosphatase inhibitor cocktail 3). Lysates were precleared by centrifugation at 20,000 g for 

10 min at 4 °C and protein concentrations were determined by BCA assay and adjusted to 

approximately 1.5 μg/μL with lysis buffer. Proteins were reduced with 5 mM dithiothreitol 

for 1 h at 37 °C, and subsequently alkylated with 10 mM iodoacetamide for 45 min at 25°C 

in the dark. Samples were diluted to 2 M urea concentration with 25 mM Tris, pH 8.0 and 

digested with Lys-C (Wako) at 1:50 enzyme‐to‐substrate ratio. After 2 h of digestion at 25 

°C, aliquot of sequencing grade modified trypsin (Promega, V5117) at 1:25 enzyme‐to‐
substrate ratio was added to the samples and further incubated at 25 °C for 14 h. The 

digested samples were then acidified with 100% formic acid to 1% of final concentration of 

formic acid and centrifuged for 15 min at 1,500 g to clear digest from precipitation. Tryptic 

peptides were desalted on C18 SPE (Waters tC18 SepPak, WAT054925) and dried using 

Speed-Vac.

TMT-11 Labeling of Peptides: Desalted peptides from each sample were labeled with 11-

plex TMT reagents. Peptides (400 μg) from each of the samples were dissolved in 80 μL of 

50 mM HEPES, pH 8.5 solution, and mixed with 400 μg of TMT reagent that was dissolved 
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freshly in 20 μL of anhydrous acetonitrile according to the optimized TMT labeling protocol 

described previously (Zecha et al., 2019). Channel 126 was used for labeling the internal 

reference sample (pooled from 100 adult GBM tumor and 10 GTEx normal samples (Wang 

et al., 2020)) throughout the sample analysis. After 1 h incubation at RT, 60 μL 50 mM 

HEPES pH8.5, 20% ACN solution was added to dilute the samples, and 12 μL of 5% 

hydroxylamine was added and incubated for 15 min at RT to quench the labeling reaction. 

Peptides labeled by different TMT reagents were then mixed, dried using Speed-Vac, 

reconstituted with 3% acetonitrile, 0.1% formic acid and desalted on tC18 SepPak SPE 

columns.

Peptide Fractionation by bRPLC: Approximately 3.5 mg of 11-plex TMT labeled sample 

was separated on a reversed phase Agilent Zorbax 300 Extend-C18 column (250 mm × 4.6 

mm column containing 3.5-μm particles) using the Agilent 1200 HPLC System. Solvent A 

was 4.5 mM ammonium formate, pH 10, 2% acetonitrile and solvent B was 4.5 mM 

ammonium formate, pH 10, 90% acetonitrile. The flow rate was 1 mL/min and the injection 

volume was 900 μL. The LC gradient started with a linear increase of solvent B to 16% in 6 

min, then linearly increased to 40% B in 60 min, 4 min to 44% B, 5 min to 60% B and 

another 14 of 60% solvent B. A total of 96 fractions were collected into a 96 well plate 

throughout the LC gradient. These fractions were concatenated into 24 fractions by 

combining 4 fractions that are 24 fractions apart (i.e., combining fractions #1, #25, #49, and 

#73; #2, #26, #50, and #74; and so on). For proteome analysis, 5% of each concatenated 

fraction was dried down and re-suspended in 2% acetonitrile, 0.1% formic acid to a peptide 

concentration of 0.1 mg/mL for LC-MS/MS analysis. The rest of the fractions (95%) were 

further concatenated into 12 fractions (i.e., by combining fractions #1 and #13; #3 and #15; 

and so on), dried down, and subjected to immobilized metal affinity chromatography 

(IMAC) for phosphopeptide enrichment.

Phosphopeptide Enrichment Using IMAC: Fe3+-NTA-agarose beads were freshly 

prepared using the Ni-NTA Superflow agarose beads (QIAGEN, #30410) for 

phosphopeptide enrichment. For each of the 12 fractions, peptides were reconstituted to 0.5 

μg/μL IMAC binding/wash buffer (80% acetonitrile, 0.1% trifluoroacetic acid) and 

incubated with 10 μL of the bead suspension for 30 min at RT. After incubation, the beads 

were sequentially washed with 50 μL of wash buffer (1X), 50 μL of 50% acetonitrile, 0.1% 

trifluoroacetic acid (1X), 50 μL of wash buffer (1X), and 50 μL of 1% formic acid (1X) on 

the stage tip packed with 2 discs of Empore C18 material (Empore Octadecyl C18, 47 mm; 

Supleco, 66883-U). Phosphopeptides were eluted from the beads on C18 using 70 μL of 

elution buffer (500 mM K2HPO4, pH 7.0). Sixty microliter of 50% acetonitrile, 0.1% formic 

acid was used for elution of phosphopeptides from the C18 stage tips after two washes with 

100 μL of 1% formic acid. Samples were dried using Speed-Vac and later reconstituted with 

12 μL of 3% acetonitrile, 0.1% formic acid for LC-MS/MS analysis.

LC-MS/MS Analysis: Fractionated samples prepared for whole proteome and 

phosphoproteome analysis were separated using a nanoACQUITY UPLC system (Waters) 

by reversed-phase HPLC. The analytical column was manufactured in-house using 

ReproSil-Pur 120 C18-AQ 1.9 μm stationary phase (Dr. Maisch GmbH) and slurry packed 
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into a 25-cm length of 360 μm o.d. × 75 μm i.d. fused silica picofrit capillary tubing (New 

Objective). The analytical column was heated to 50 °C using an AgileSLEEVE column 

heater (Analytical Sales and Services). The analytical column was equilibrated to 98% 

Mobile Phase A (MP A, 0.1% formic acid/3% acetonitrile) and 2% Mobile Phase B (MP B, 

0.1% formic acid/90% acetonitrile) and maintained at a constant column flow of 200 nL/

min. The sample was injected into a 5-μL loop placed in-line with the analytical column 

which initiated the gradient profile (min:%MP B): 0:2, 1:6, 85:30, 94:60, 95:90, 100:90, 

101:50, 110:50. The column was allowed to equilibrate at start conditions for 30 minutes 

between analytical runs.

MS analysis was performed using an Orbitrap Fusion Lumos mass spectrometer 

(ThermoFisher Scientific). The whole proteome and phosphoproteome samples were 

analyzed under identical conditions. Electrospray voltage (1.8 kV) was applied at a carbon 

composite union (Valco Instruments) coupling a 360 μm o.d. × 20 μm i.d. fused silica 

extension from the LC gradient pump to the analytical column and the ion transfer tube was 

set at 250 °C. Following a 25-min delay from the time of sample injection, Orbitrap 

precursor spectra (AGC 4 × 105) were collected from 350–1800 m/z for 110 min at a 

resolution of 60K along with data dependent Orbitrap HCD MS/MS spectra (centroid) at a 

resolution of 50K (AGC 1 × 105) and max ion time of 105 ms for a total duty cycle of 2 

seconds. Masses selected for MS/MS were isolated (quadrupole) at a width of 0.7 m/z and 

fragmented using a collision energy of 30%. Peptide mode was selected for monoisotopic 

precursor scan and charge state screening was enabled to reject unassigned 1+, 7+, 8+, and > 

8+ ions with a dynamic exclusion time of 45 seconds to discriminate against previously 

analyzed ions between ±10 ppm.

Quantification of TMT Whole Proteomic Data: The Thermo RAW files were processed 

with mzRefinery to characterize and correct for any instrument calibration errors, and then 

with MS-GF+ v9881 (Gibbons et al., 2015; Kim et al., 2008; Kim and Pevzner, 2014) to 

match against the RefSeq human protein sequence database downloaded on June 29, 2018 

(hg38; 41,734 proteins), combined with 264 contaminants (e.g., trypsin, keratin). The 

partially tryptic search used a ± 10 ppm parent ion tolerance, allowed for isotopic error in 

precursor ion selection, and searched a decoy database composed of the forward and 

reversed protein sequences. MS-GF+ considered static carbamidomethylation (+57.0215 Da) 

on Cys residues and TMT modification (+229.1629 Da) on the peptide N-terminus and Lys 

residues, and dynamic oxidation (+15.9949 Da) on Met residues for searching the global 

proteome data. (Monroe et al., 2008). Next, PSMs passing the confidence thresholds 

described above were linked to the extracted reporter ion intensities by scan number. The 

reporter ion intensities from different scans and different bRPLC fractions corresponding to 

the same gene were grouped. Relative protein abundance was calculated as the ratio of 

sample abundance to reference abundance using the summed reporter ion intensities from 

peptides that could be uniquely mapped to a gene. The pooled reference sample was labeled 

with TMT 126 reagent, allowing comparison of relative protein abundances across different 

TMT-11 plexes. The relative abundances were log2 transformed and zero-centered for each 

gene to obtain final relative abundance values. Small differences in laboratory conditions 

and sample handling can result in systematic, sample-specific bias in the quantification of 
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protein levels. In order to mitigate these effects, we computed the median, log2 relative 

protein abundance for each sample and re-centered to achieve a common median of 0.

Quantification of Phosphopeptides: Phosphopeptide identification for the 

phosphoproteomic data files were performed as in the whole proteome data analysis 

described above (e.g., peptide level FDR < 1%), with an additional dynamic phosphorylation 

(+79.9663 Da) on Ser, Thr, or Tyr residues. The phosphoproteome data were further 

processed by the Ascore algorithm (Beausoleil et al., 2006) for phosphorylation site 

localization, and the top-scoring sequences were reported. For phosphoproteomic datasets, 

the TMT-11 quantitative data were not summarized by protein but left at the phosphopeptide 

level. To account for sample-specific biases in the phosphoproteome analysis, we applied the 

correction factors derived from median-centering the whole proteomic dataset. 

Preprocessing of the proteomic tables of the Project Hope sample analysis were performed 

in the same fashion in the pediatric sample analysis described above.

Targeted Mass Spectrometry Methods—For targeted mass spectrometry 

measurements, tissue lysates were reduced, alkylated with iodoacetamide, and digested by 

the addition of trypsin at a 1:50 trypsin:protein ratio (by mass), as previously described 

(Whiteaker et al., 2018). After 2 hours, a second trypsin aliquot was added at a 1:100 

trypsin:protein ratio and incubated overnight at 37°C with shaking. After 16 hours, the 

reaction was quenched with formic acid (final concentration 1% by volume). A mix of stable 

isotope-labeled peptide standards was added to the digest at 80 fmol/mg per peptide.

Peptide immunoaffinity enrichment was performed as previously described (Zhao et al., 

2011), using a mixture of 50 antibodies crosslinked on protein G beads targeting 75 peptides 

(21 modifications, 40 proteins). LC-MRM was performed as previously described 

(Whiteaker et al., 2018).

Targeted MRM Assay Characterization: Response curves were generated in a 

background matrix of pooled brain tumor lysates. Five hundred microgram aliquots of the 

pooled lysate were digested by trypsin, and the heavy stable isotope-labeled peptides were 

added to aliquots in triplicate by serial dilution covering the amounts 1000, 200, 40, 8, 3.2, 

1.28, 0.512, 0.205 fmol/mg with light spiked into the pool at 80 fmol/mg. Blanks were 

prepared using a background matrix with light peptide (no heavy spike). All points were 

analyzed in triplicate (including peptide addition, immunoaffinity enrichment, and mass 

spectrometry). Data analysis was performed using Skyline. The Lower Limit of 

Quantification (LLOQ) was obtained by empirically finding the lowest point on the curve 

with a CV <20% in the curve replicates. All measurements were filtered by the LLOQ (i.e. 

all measurements were required to be above the LLOQ). The upper limit of quantification 

(ULOQ) was determined by the highest concentration point of the response curve that was 

maintained in the linear range. For curves that maintained linearity at the highest 

concentration measured, the ULOQ is a minimum estimate.

Repeatability was determined using the same pooled lysate matrix used to generate the 

response curves with heavy peptides spiked in at three concentrations (0.8, 80, 800 fmol/mg) 

and light peptides added at 200 fmol/mg. Complete process triplicates (including digestion, 
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capture, and mass spectrometry) were prepared and analyzed on five independent days. 

Intra-assay variation was calculated as the mean CV obtained within each day. Inter-assay 

variation was the CV calculated from the mean values of the five days.

Targeted MRM Data Results: The median LLOQ was 1.6 fmol/mg and the median linear 

range >2.8 orders of magnitude. In repeatability experiments, the median CV at the medium 

spike level was 8.6% (intra-assay CV) and 26% (inter-assay CV).

Each data point is the peak area ratio (light:heavy) filtered by the LLOQ. The unfiltered data 

points are also available in the table. For each sample 500 ug aliquots were analyzed in 

complete process replicate (including digestion, capture, and mass spectrometry). The 

number of replicates available for processing was determined by the amount of lysate 

available. Overall, 68 out of the 75 peptide analytes were detected in >50% of the samples 

above the LLOQ. Five peptides were not detected in any samples 

(TNF10.pan.NGELVIHEK, ATM pS2996, ATMpS367, RIF1 pS1542, 

RIF1.pan.ASQGLLSSIENSESDSSEAK). For peptides with replicates available, the median 

CV was 12.9%. The correlation of peak area ratios for peptides originating from the same 

protein was high (RPTOR: R2=0.9047, ERBB2: R2=0.9536, K25: R2=0.9964) indicating 

good quality for multiple measurements of the same protein.

QUANTIFICATION AND STATISTICAL ANALYSIS

Kinase Activity Score Calculation—Substrates of every kinase were collected from the 

PhosphoSitePlus database (version 052819). We only considered kinases with at least five 

substrates observed in our phosphoproteomic data. To calculate the kinase activity score for 

each sample, we run a Wilcoxon rank sum test comparing the abundance of substrates of a 

particular kinase with that of the remaining phosphosites observed in our data. This test was 

performed for each kinase and each of the 209 samples (i.e., excluding the post-mortem 

samples). The normalized test statistic of the Wilcoxon test was utilized as the activity score 

for each kinase.

Consensus clustering analysis

Proteomic cluster: Consensus clustering was performed to identify proteo-typical clusters 

of childhood brain tumors. Based on gene level global proteomics data, features (genes) 

were first filtered according to the coefficient of variation (CV) and standard deviation (SD) 

across samples. Specifically, the CV was calculated using the raw intensity data; features 

with CV less than 0.1 were filtered resulting in the exclusion of 583 genes for consideration; 

finally, 3000 genes with the highest standard deviation across 218 samples were selected for 

clustering.

Consensus clustering was performed using the ConsensusClusterPlus package in R 

(Wilkerson and Hayes, 2010). Prior to clustering the data matrix was scaled so that each 

peptide had a mean 0 and a sd of 1 across samples. K-means clustering based on an 

Euclidean distance metric was conducted across 500 repetitions for cluster numbers ranging 

from 2 through 10 using otherwise default parameters.
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Phosphoproteomic and transcriptomic cluster: To compare proteomic clusters with those 

derived from alternative -omic data types, RNA-seq and phosphosite clusters were identified 

using a similar procedure. Specifically, phosphosite data from 217 samples were clustered 

using the 3000 phosphosites with the largest SD after first filtering 830 phospho-sites with 

CV>0.1. For the clustering of RNA-seq data, ½ of the genes with the highest standard 

deviation were selected corresponding to 9104 features from 188 tumor samples.

Inspection of the CDF distribution, as well as patterns of concordance across data types and 

with histological diagnosis, led to the selection of 8 clusters for further analysis.

Comparison across single-omic clusters: To evaluate and compare the cohesiveness of 

allocations derived using single-omic clustering, we utilized silhouette scores. Silhouette 

scores, which measure the similarity of a given sample to the other samples in the same 

cluster, were calculated using the silhouette function from the ‘cluster’ package in R. For 

each single-omic dataset, the Euclidean distance matrix used in the consensus clustering and 

the respective single-omic clustering allocations were included as inputs to the silhouette 

function.To further compare clustering allocations across single-omic datasets and with 

histological diagnoses, the percentage of each diagnostic type falling into each cluster was 

calculated for each set of allocations. This data is summarized in Figure S1B.

Survival analysis for proteomic clusters—The association of proteomic clusters and 

overall survival was evaluated using a Cox model based on 198 patients with surgical 

samples and overall survival information (Figure 1C). Overall survival values were truncated 

to a maximum of 3750 days.

Stemness Score—The stemness indices are used for assessing the degree of oncogenic 

dedifferentiation, as previously described (Malta et al., 2018). In other words, stemness can 

be considered (Malta et al., 2018). In other words, stemness can be considered to be the 

ability of the tumor to phenocopy a normal stem cell. Higher values for stemness indices 

were associated with biological processes active in cancer stem cells and with greater tumor 

dedifferentiation, as reflected in histopathological grade (Malta et al., 2018). Recently 

several signaling pathways associated with stemness have been reported for each of the 

mentioned CBTTC PBT diagnoses (Chang et al., 2017; Liu et al., 2019; Meel et al., 2018).

Stemness scores were calculated as previously described (Malta et al., 2018). Firstly, we 

used MoonlightR (Colaprico et al., 2020) to query, download, and preprocess the pluripotent 

stem cell samples (ESC and iPSC) from the Progenitor Cell Biology Consortium (PCBC) 

dataset (Daily et al., 2017; Salomonis et al., 2016). Secondly, to calculate the stemness 

scores based on mRNA expression, we built a predictive model using one-class logistic 

regression (OCLR) (Sokolov et al., 2016) on PCBC dataset. To calculate mRNA based 

stemness index (mRNASi), we used the FPKM (Fragments Per Kilobase Million) mRNA 

expression values for all the 188 CBTTC PB tumors. We used the function 

TCGAanalyze_Stemness from the package TCGAbiolinks (Colaprico et al., 2016) and 

following our previously-described workflow (Mounir et al., 2019), with “stemSig” 

argument set to PCBC_stemSig.
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Proliferative Index—Proliferative index was calculated based on gene expression data of 

40 genes contained in the proliferation gene signature from Yuan et al, (Yuan et al., 2018). 

The proliferative index was computed via ssGSEA score using the package GSVA 

(Hanzelmann et al., 2013).

Investigation of two subtypes of Cranio—To better characterize the biological 

features differentiating the CP allocated to different proteomic clusters and to investigate the 

hypothesis that CP allocated to the Cranio/LGG BRAFV600E (C4) may respond to MEK 

inhibitor treatment, regression analyses were performed using the global proteomic data to 

identify markers differentially expressed between C4 and C8 with CTNNB1 status 

accounted for as a covariate. Gene set enrichment tests were performed for a MEK inhibition 

response signature based on 15 genes overlapping between our global proteomic data and a 

52 member geneset previously reported to be perturbed by MEK inhibitor treatment in 

multiple cancer cell lines with BRAFV600E (Pratilas et al., 2009). The MEK inhibition 

response gene set was found to be significantly enriched of proteins upregulated in C4 

(pvalue=0.05), as is illustrated in the volcano plot in Figure S1C.

Proteomic Cluster Signature—To identify proteins and phospho-site markers 

associated with proteomic clusters, a multiple regression was performed using protein/

phospho-site abundances as responses, and binary indicators representing the 8 proteomic-

clusters as regressors, with age of specimen diagnosis, gender, as well as treatment and 

clinical status at sample collection included as covariates. Model fitting was performed 

without an intercept so that the resulting betas are interpretable as a mean shift relative to all 

tumors. Results from cluster-specific association testing performed on 6429 protein 

(N=218), 4548 phosphosite (N=218), and 18209 gene expression (N=188) features are 

reported in Table S1.

Pathways analysis for proteomic clusters—To better characterize proteomic cluster, 

we sought to identify the biological pathways distinctly associated with each proteomic 

cluster. First, genes were cluster based on a Z-score matrix (8 columns) summarizing the 

cluster-specific regression analysis results based on proteomics data. Specifically, each row 

of the Z-score matrix represents the estimated mean shift of a given protein’s abundance in 

each of the 8 proteomic clusters. Considering between 10–20 clusters, K-means clustering 

was performed to group genes (N=6353) whose protein abundances were significantly 

associated (FDR<0.05) with at least one proteomic cluster. Pathway enrichment was 

performed to test for overrepresentation of biological pathway/gene-set members in each 

gene group using a one-tailed Fisher’s Exact Test. The final number of gene groups (k=14) 

was chosen to maximize the number of significant pathway associations based on the 

Hallmark gene sets from MSigDB (Liberzon et al., 2015; Liberzon et al., 2011) Downloaded 

from http://software.broadinstitute.org/gsea/msigdb/collections.jsp on 02/14/2019. Based on 

the 14 groups of gene so selected, a comprehensive pathway analysis was further performed 

using GO (Ashburner et al., 2000), Biocarta, KEGG (Kanehisa et al., 2017), Hallmark 

(Liberzon et al., 2015), and Reactome (Fabregat et al., 2018) gene set collections.

Petralia et al. Page 29

Cell. Author manuscript; available in PMC 2021 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://software.broadinstitute.org/gsea/msigdb/collections.jsp


Pathway Consolidation via Sumer: Gene set enrichment results can be difficult to interpret 

due to significant redundancy of gene membership across collections of gene sets. To aid in 

the interpretation and reduce redundancy of pathway results, we utilized the Sumer tool 

(Savage et al., 2019). This tool uses an affinity propagation algorithm to cluster similar 

pathway gene sets into largely distinct modules. Sumer was run using -log10 p-values from 

the Fisher test of gene cluster enrichment as weights. Consolidated pathway modules for 

each gene cluster were identified, based on the top 50 pathways by weight (Table S1); a 

subset of these along with other pathways with biological relevance in cancer were selected 

for shown in Figure 1D.

Immune subtype identification—The abundance of 64 different cell types were 

computed via xCell based on transcriptomic profiles (Aran et al., 2017). Therefore, for this 

analysis, 182 pediatric brain tumor samples with mRNA data were utilized excluding post-

mortem samples. Table S2 contains the final score computed by xCell of different cell types. 

Consensus clustering was performed based on only cells which were detected in at least 5% 

of the patients (adjusted p-value < 1%). This filtering resulted in 35 cell types. A Microglia 

signature was derived as ssGSEA score (Hanzelmann et al., 2013) based on the following 

microglia-specific markers: P2RY12, TMEM119, SLC2A5, TGFBR1, GPR34, SALL1, 
GAS6, MERTK, C1QA, PROS1, CD68, ADGRE1, AIF1, CX3CR1, TREM2 and ITGAM 
(Butovsky et al., 2014; Crotti and Ransohoff, 2016; Haage et al., 2019; Solga et al., 2015). 

Based on these 36 signatures, consensus clustering was performed in order to identify 

groups of samples with similar immune/stromal characteristics. Consensus clustering was 

performed using the R packages ConsensusClusterPlus (Wilkerson and Hayes, 2010) based 

on z-score normalized signatures. Specifically, 80% of the original pediatric brain tumor 

samples were randomly subsampled without replacement and partitioned into 5 major 

clusters using the Partitioning Around Medoids (PAM) algorithm, which was repeated 200 

times (Wilkerson and Hayes, 2010) (Fig. 2A, Table S2).

single cell RNAseq deconvolution Analysis—We have applied the tool Music (Wang 

et al., 2019) trained on single cell sequencing data from (Darmanis et al., 2017) to all the 

mRNA expression values for all 182 tumors considered for the immune subtype analysis. 

We used the function TCGAanalyze_scRNA (tool = Music, data = GSE84465) from the 

package TCGAbiolinks (Colaprico et al., 2016) to query, download and prepare the data 

from (Darmanis et al., 2017) and subsequently obtain microglia, neuronal and 

oligodendrocytes cell type composition in these tumors. scRNA data were normalized 

following previously-described workflow (Lun et al., 2016).

Tumor Purity, Stromal and Immune Scores—Besides xCell, we utilized ESTIMATE 

(Yoshihara et al., 2013) to infer immune and stromal scores based on gene expression data 

(Table S2). To infer tumor purity, TSNet was utilized (Petralia et al., 2018) (Table S2).

Differentially Expressed Genes and Pathway—Genes upregulated in each of the five 

immune clusters were identified based on gene expression data, global proteomic and 

phosphoproteomic data. For this analysis, imputed proteomic and phosphoproteomic data 

were utilized. For each data type, every feature vector was normalized by subtracting the 
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mean and dividing by the standard deviation across 182 samples. Then, for each data type, 

the expression level of gene/protein/phosphosite j was modeled via

xi, j = ∑k = 1
5 □ βk, j □ 1 i ∈ Ik + ϵi, j (1)

with ϵi,j ~ N (0,σj), Ik being the set of samples belonging to the k-th immune cluster, 1 (A) 

being an indicator function equal to 1 if the event A occurs and 0 otherwise, βk,j being the 

coefficient capturing the association between gene j and the k-th immune group. Benjamini 

adjusted p-values (Benjamini and Hochberg, 1995) can be found in Table S2. For each 

immune cluster, considering the set of genes up-regulated with Benjamini’s adjusted p-value 

lower than 1%, a fisher exact test was implemented to derive enriched pathways. For this 

analysis, pathways from the Reactome (Fabregat et al., 2018), KEGG (Kanehisa et al., 

2017), Hallmark (Liberzon et al., 2015) and GO (Ashburner et al., 2000) databases were 

considered and as background the full list of gene/proteins observed under each data type 

was utilized. For phosphorylation data, a gene was considered upregulated if at least one 

substrate of the gene was found upregulated based on phosphorylation data at 1% FDR. The 

pathway analysis results for different data types are contained in Table S2B. Figure 2B 

contains key pathways significant at 10% FDR for different data types. Given their similarity 

in terms of enriched pathways, the two cold immune clusters (i.e., Cold-medullo and Cold-

mixed) were combined into one category and pathways upregulated in both clusters at 10% 

FDR were reported in Figure 2B. Pathway scores for 182 pediatric brain tumor samples 

were computed based on ssGSEA using the R package GSVA and included in Figure 2A 

(Hanzelmann et al., 2013).

Microglia and Macrophage Polarization in LGG—Microglia polarization signatures 

were constructed with ssGSEA (Hanzelmann et al., 2013) using RNAseq measurements 

based on genes described in recent literature (Dello Russo et al., 2017; Fumagalli et al., 

2018; Krasemann et al., 2017). Specifically, the following gene sets were considered: 

Proinflammatory (M1) = (IL1B, TLR4, TNF, NOS2, APOE, CLEC7A, LGALS3, GPNMB, 
ITGAX, SPP1, CCL2, FABP5, CYBB); Anti-inflammatory (M2) = (COQ7, IL4, IL13, IL10, 
ARG1, TGFB1, SMAD3, HEXB, P2RY12, MERTK, ENTPD1, TMEM119, TGFBR1, 
CD163, CD206). M2–0.65*M1 difference was used for Fig. 2G.

Immune association with BRAF Status in LGG—For this analysis, we consider the 

35 immune/stromal signature from xCell and the microglia signature utilized to perform the 

consensus clustering, microglia M1 and M2 signatures and antigen presenting machinery 

Class I and Class II signature. Antigen presenting machinery signature Class I was derived 

via ssGSEA score (Hanzelmann et al., 2013) using gene expression measurements of HLA-
A, HLA-B and HLA-C genes; while class II signature based on the gene expression of HLA-
DPA1, HLA-DPB1, HLA-DRA, HLA-DRB1, HLA-DRB5 and HLA-DQB1. Each signature 

was normalized to z-score and then was modeled as function of BRAF status (i.e., BRAF 

wild-type, BRAF fusion and BRAF v600E) via linear model. Table S2 reports p-values for 

association passing 10% FDR.
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iProFun Based Cis Association Analysis—We investigated the functional molecular 

quantitative traits (mRNA, protein, and phosphoprotein abundances) perturbed by CNV, 

using an integrative analysis tool iProFun (Song et al., 2019). iProFun jointly models the 

multi-omics outcomes, and enjoys largely enhanced power for detecting significant cis-

associations shared across different omics data types; and it also achieved better accuracy in 

inferring cis-associations unique to certain type(s) of molecular trait(s). Specifically, we 

considered three functional molecular quantitative traits (mRNA expression levels, global 

protein abundances, and phosphopeptide abundances) for their associations with CNV 

measured by log ratios. After removing post-mortem samples, we collected 168 pediatric 

brain tumor samples with all four platforms measured, and performed iProFun on these 

samples. Samples from different biopsies of the same subject (e.g. from initial tumor and 

progressed tumor) were both considered in the analysis. The mRNA expression levels were 

available for 18,209 genes, the global protein abundance measurements were available for 

6,429 genes, the phosphopeptide abundance was available for 4,518 peptides from 1,958 

genes, and the CNVs were obtained for 19,374 genes, respectively. All data types were 

preprocessed to eliminate potential issues for analysis such as batch effects, missing data and 

major unmeasured confounding effects. For this analysis, imputed proteomic and 

phosphoproteomic tables were utilized. The mRNA expression levels, global protein and 

phosphoprotein abundances were also normalized to standard normal distribution. To 

account for potential confounding factors, we considered age, gender, tumor purity, tumor 

diagnosis, treatment status at collection and somatic mutation. Tumor purity was determined 

using TSNet from RNA-seq data as described above.

The iProFun procedure was first applied to a total of 1622 genes measured across all 4 data 

types (mRNA, global protein, phosphoprotein, CNV). Specifically, we started with 

traditional linear regression for each of the three outcomes separately: mRNA ~CNV + 

covariates, global ~ CNV + covariates, and phospho ~ CNV + covariates. Then, the 

association summary statistics from regressions was taken as input for iProFun to call 

posterior probabilities of belonging to each of the eight possible configurations (“None”, 

“mRNA only” “global only”, “phospho only” “mRNA & global”, “mRNA & phospho”, 

“global & phospho” and “all three”) and to determine significance associations.

Table S3 presents the significant genes that pass the following three criteria: (1) the 

satisfaction of biological filtering procedure, (2) posterior probabilities > 75%, and (3) 

empirical false discovery rate (eFDR)<10%. Specifically, the biological filtering criterion 

requires that CNV presents positive associations with all the types of molecular QTs. 

Secondly, a significance was called only if the posterior probabilities > 75% of a predictor 

being associated with a molecular QT, by summing over all configurations that are 

consistent with the association of interest. For example, the posterior probability of a CNV 

being associated with mRNA expression levels was obtained by summing up the posterior 

probabilities in the following four association patterns – “mRNA only”, “mRNA & global”, 

“mRNA & phospho” and “all three”, all of which were consistent with CNV being 

associated with mRNA expression. Lastly, we calculated empirical FDR via 100 

permutations per molecular QTs by shuffling the label of the molecular QTs, and requested 
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empirical FDR (eFDR) <10% by selecting a minimal cutoff value of alpha that 

75%<alpha<100%. The eFDR is calculated by:

eFDR = Averaged No. of genes with posterior probabilities > alpha in permuted data  
/  Averaged No. of genes with posterior probabilities > alpha in original data .

In total, we identified 515 genes whose CNV showed cascading cis-regulation of their 

mRNA expression levels, global protein and phosphopeptide abundances.

Similarly, iProFun was applied to a total of 6183 genes measured across all 3 data types 

(mRNA, global protein, CNV) for their cis regulatory patterns in tumors, and 1541 genes 

whose CNV showed cascading cis-regulation of their mRNA expression levels and global 

protein abundances. To further visualize the cascading genes from iProFun analysis, we 

selected a subset of cascading genes which have adequate copy number activity in any of the 

diagnosis subtypes, and marginally differentiated in protein/phosphosite abundance across 

different copy number status in the same subtype. We define copy number activity by 

comparing CNVs with the standard deviation across all samples on the same location: cnv 

over 1-fold SD was regarded as gain and below negative 1-fold SD regarded as loss. 

Adequate copy number activity was defined with the total proportion of gain and loss over 

25% and either category including at least 2 samples. After categorizing CNV with 3 

groups: gain/normal/loss, we tested if protein/phospho abundance was differentially 

distributed with contrast on gain-to-normal or loss-to-normal by two sample Wilcoxon-test. 

Genes with p-value below 0.1 in the test under one of the contrasts were indicated as 

marginal associated with CNV. All of the selected cascade genes were labeled along the 

genome in Figure S3D and those genes also being reported as druggable targets or 

oncogenes were listed with their symbols on the same plot.

Cis-regulation of Somatic Mutations—We considered genes whose mutation rate is 

prevalent (at least 6 mutations across 200 tumors) to investigate their associations with their 

cis mRNA, global and phosphoprotein abundances. A total of 46 genes were therefore 

considered in this association analysis. For each mutation, we considered the existence of 

any types of mutation (Yes/No) as primary predictor, mRNA/protein/phosphosite abundance 

as outcome, and CNV, age, gender, tumor purity and tumor diagnosis types as covariates, 

and performed linear regressions for their associations.

Trans association analysis—For each tumor diagnosis, we investigated the trans 

associations of its abundant genomic events on all measured mRNA, protein, phosphosite 

levels that pass QC procedures. For each subtype we calculated the chromosome arm-level 

cnv activity level using similar criterion as described in iProfun analysis. We compared arm-

level CNVs in a specific subtype with their standard deviation across all samples on the 

same arm, calculated total proportion of gain (over 1-fold SD) and loss (below negative 1-

fold SD). The proportion over 25% represented adequate activity in the chromosome arm 

region. We selected 5 diagnosis subtypes which contains at least 1 active CNV region to test 

trans associations. We also consider the trans association between two signature mutations 

and their highly enriched subtypes. Specifically, we considered association on chromosome 

arm 6q, 17p, 17q, and 22q in atypical teratoid rhabdoid tumor; CTNNB1 mutation and 11p 
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in CP; 1q and 8q in EP; 7p in ganglioglioma; NF1 mutation, 1q, 6q, 7p, 9p, 9q, 11p, 13q, 
14q, 16q, 17q and 21p in high grade astrocytoma; 1q, 7p, 7q, 8q, 10q, 11p, 11q, 16q, 17p, 
17q and 18p in MB. For each of these genomic events, we investigated their association with 

all mRNA levels, protein abundances and phosphosite abundances among patients with the 

corresponding diagnosis, using unadjusted linear regression. Additional covariates were not 

considered due to small sample sizes in subtypes. We reported significant trans associations 

if FDR < 0.1.

To further understand the biological impact of the trans-regulations, we tested enrichment of 

positively regulated or negatively regulated gene set in pathways with fisher exact test. 

Enrichment test was performed on both RNA trans-regulated genes and protein trans-

regulated genes. In this test, pathways from the Reactome (Fabregat et al., 2018), KEGG 

(Kanehisa et al., 2017) and GO (Ashburner et al., 2000) databases were considered and as 

background the full list of gene/proteins observed under each data type was utilized. Some 

pathways were enriched by trans-regulated genes in protein but not in RNA. For example, 

members of the “Cell Cell Contact Zone” pathway (purple) are enriched in the set of 

proteins upregulated in CTNNB1 mutant samples; while “Coagulation” pathway is enriched 

in proteins downregulated in CTNNB1 mutant samples.

Kinase Activity across different histologies—Kinase activity scores were calculated 

following the strategy illustrated in section “Kinase Activity Score Calculation“. Table S4 

contains the kinase activity for all diagnosis. For this analysis, we used proteomics and 

phosphoproteomic imputed data. The activity of each kinase was modeled as a function of 

the diagnosis indicator and the treatment information via a linear regression. Given the 

impact of post-mortem collection on proteogenomic data, post-mortem samples have been 

excluded from the analysis. P-values were adjusted for multiple comparison via Benjamini 

& Hochberg adjustment (Table S4). In addition, for each diagnosis, the correlation between 

kinase activity and global abundance is reported in Table S4.

Kinase-Substrates Association—To discover the phosphorylation events that were 

relevant to pediatric brain tumors, we utilized the phosphosite-level data to examine the 

overall relationship between kinase global abundance and phospho-abundance with targeted 

sites. Given the impact of post-mortem collection on proteogenomic data, post-mortem 

samples have been excluded from the analysis. For this analysis, we used proteomic and 

phosphoproteomic imputed data. For each diagnosis, only kinases and phosphosites 

measured for at least 50% of the samples have been considered in the analysis. Since ATRT 

and MB tumors were merged into one group of samples, only kinases and phosphosites 

observed in at least one diagnosis (i.e., ATRT and MB) for more than 50% of the samples 

were utilized. For this analysis, experimentally validated kinase-substrate associations were 

considered from PhosphoSitePlus (Table S4) (Hornbeck et al., 2015). This filtering resulted 

in a total number of 540 kinase-substrates possible associations between 82 unique kinases 

and 267 unique substrates (Table S4). Then, each phosphosite abundance was modeled as a 

function of targetable kinases via a multivariate linear regression adjusting for treatment 

information. When both phospho-abundance and global-abundance data were available for a 

particular kinase, the data type with higher correlation with the targeted site was considered 
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in the model. For each diagnosed subtype, we adjusted for multiple comparisons via 

permutation technique. In particular, for each permutation, we run the multivariate analysis 

after randomly permuting the sample order of the abundance of the targeted site. Repeating 

this analysis for 200 permutations, we generated the distribution of p-values under the null 

hypothesis of no-association and utilized this distribution to compute FDR (Tusher et al., 

2001). Only associations passing an FDR adjustment of 10% were reported as significant 

(Table S4, Fig. S4A). Note, given the small sample size of the ATRT and MB cohorts, their 

shared identity as embryonal tumors and their proteomic similarity (Fig. 1D), ATRT and MB 

samples were combined to form the ATRT/MB group in this analysis.

Validation of kinase-phospho associations—Kinase-phospho associations detected 

in HGG were validated using proteomic and phosphoproteomic data for 23 additional high-

grade glioma samples. This additional data is reported in Table S4.

BRAF mutation association analysis for LGG—A regression analysis was performed 

to compare the abundance of wild type to each mutant type (fusion or point), with age of 

diagnosis and diagnosis type (initial or progressed) as covariates (Table S5). For this 

analysis, the LGG diagnosis-specific imputed tables (N=93) were used, including of 5629 

and 3437 markers for protein and phosphoproteomic data respectively. Association analysis 

was also performed for 85 LGG samples across 18209 transcripts.

Pathways associated with BRAF status in LGG—Wilcoxon enrichment analysis 

(WEA) was used to test for association between pathway genesets and BRAF status among 

LGG samples based on regression results from RNA and protein data. Gene set enrichment 

was conducted across multiple collections of genesets, including GO (Ashburner et al., 

2000), Biocarta, KEGG (Kanehisa et al., 2017), Hallmark (Liberzon et al., 2015), and 

Reactome (Fabregat et al., 2018). These collections were downloaded from http://

software.broadinstitute.org/gsea/msigdb/index.jsp on 2/14/2019. Gene sets with less than 5 

or more than 250 member genes were excluded. A total of 4795 and 6215 genesets fitting 

this criterion were tested for enrichment in proteomic and RNA datasets respectively.

Consolidation pathways via Sumer: To help identify pathways distinctly associated with 

each mutation type and to consolidate redundant pathway results, Sumer software was 

utilized (Savage et al., 2019). The -log10 signed p-value derived from a Z-test comparing 

mean ssGSEA scores (Hanzelmann et al., 2013) between mutant types was used as the 

pathway weight when running Sumer. Consolidated pathway modules are shown based on 

the top 150 pathways by weight (Table S5); a subset of these along with other pathways with 

biological relevance in cancer were selected for discussion in the main text.

Phosphoproteomic Co-expression Network in LGG—Network inference was 

utilized to characterize co-expression patterns among phosphorylation sites in LGG. The co-

expression network was estimated based on phosphosite level data through a random-forest 

based algorithm (Petralia et al., 2016; Petralia et al., 2015). In particular, co-expression 

networks were estimated using LGG-specific imputed phosphorylation data. In order to deal 

with the fact that sites mapping to the same protein are usually correlated, we only modeled 

each site as function of sites mapping to other proteins. Let p be the total number of sites 
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measured for n samples. Specifically, let xi, js  be the abundance of the j-th site mapping to the 

s-th protein for the i-th sample. Then, xi, js  was modeled as a function of other protein 

phosphosites, i.e. xi, jk
k ≠ s, via random forest. In order to derive the final unweighted 

networks, a proper cut-off value was chosen via permutation techniques (Fruchterman and 

Reingold, 1991; Petralia et al., 2016). Specifically, 50 permutations and an FDR cut-off of 

1E-4 was considered to derive the final network (Table S5). For the visualization of network 

modules (Fig. 5C, S5C) the software iCAVE (Kalayci and Gumus, 2018; Liluashvili et al., 

2017) and Cytoscape (Shannon et al., 2003) were utilized. Force-directed layout algorithm 

(Fruchterman and Reingold, 1991) was applied to calculate initial positioning of nodes, node 

positions were then manually adjusted for visual concerns.

Network modules associated with BRAF status—Based on the network topology, 

network modules were identified using an algorithm based on edge betweenness score 

(Csárdi and Nepusz, 2006; Newman and Girvan, 2004). A total number of 18 network 

modules containing more than 20 phosphosites were derived (Table S5). Given a network 

module, the association with BRAFV600E and BRAFFusion was found via fisher-exact test. In 

particular, a one-sided fisher exact test was performed to find modules enriched of sites 

differentially expressed between BRAFFusion and BRAF wild-type and BRAFV600E and 

BRAF wild-type at 10% FDR (Table S5). P-values were then adjusted for multiple 

comparison via Benjamini-Hochberg adjustment (Benjamini and Hochberg, 1995).

Network modules and druggable kinases—For this analysis, we considered kinases, 

which have been used, in clinical trials based on Open Targets database (https://

www.targetvalidation.org/disease/EFO_0000311) (Koscielny et al., 2017). A total number of 

52 druggable kinases were observed in global proteomic data based on LGG-specific 

imputed global proteomics table. The association between the global abundance of each 

kinase and phospho-abundance of phosphosite was assessed via a linear regression. P-values 

were adjusted for multiple comparison via Benjamini-Hochberg adjustment (Benjamini and 

Hochberg, 1995) and only associations passing a 5% FDR were reported as significant. 

Then, to assess the enrichment of sites positively associated to a particular module a one-

sided fisher-exact test was performed (Table S5).

Pathway analysis of network modules—Gene level pathway analysis was performed 

for network Module 1 and 2 (referred to as Cluster 1 and 4, respectively in Table S5). 

Basically, for each network module, we considered the genes whose phosphosites were 

contained in the network module and identified pathways in the Kegg, Reactome, Hallmark 

and GO databases enriched in this list. Specifically, a one-sided fisher exact test was 

performed. Only pathways containing at least 20 genes with phosphorylation measurement 

were considered for this analysis. Pathways significantly enriched at 10% FDR were found 

only for Module 1 (Table S5).

Survival analysis of HGG—For this analysis, diagnosis-specific imputed proteomic data 

was used. There were 25 HGG samples which included 3 patients who had two tumor 

samples at different time points. For these 3 patients, we used the sample of the initial CNS 

tumor or the one with the smaller age at specimen diagnosis (if both tumors from the same 
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patient were labelled as progressive/recurrent). Furthermore, 3 HGG samples of autopsies 

were removed from the analysis. This filtering resulted in 19 HGG samples which were 

utilized for the survival analysis. Out of these 19 samples, 7 were H3 mutants (all deceased); 

while the remaining 12 patients (4 alive and 8 deceased) were H3 wild-type. Note that the 

overall survival was truncated at 2000 days (roughly 5 years) and we treated patients with 

survival time longer than 2000 days as censored. In particular, only one sample had overall 

survival greater than 2000 days. This totaled 5 censored samples and 7 “deceased” samples 

in the H3 wild type group. Considering these samples, survival data was modeled via Cox 

regression as follows:

Coxph OS, status H3Mut + age + gender + post_treatment + tumor_purity + prot * H3Mut + prot * H3WT (
* )

with status denoting the overall survival status. H3_mutation was coded as one for H3 

mutant and zero for wild-type. Gender was coded as 1 for male and 0 for female. Treatment 

status was coded as 1 for “post-treatment” samples and 0 otherwise. The last two terms in 

the model denote the interaction between protein abundance and H3 mutant and H3 wild-

type, respectively. In particular, H3_WT was coded as 1 for H3 wild-type and 0 otherwise; 

while H3_mut was coded as 1 for H3 mutant and 0 otherwise. Given that for some HGG 

tumors, transcriptomic data was not available, for this analysis tumor purity was derived 

based on global proteomic data via TSNet (Petralia et al., 2018) (Table S2).

For 18 of the 19 samples, gene expression data was measured, and we performed a parallel 

Cox regression analysis based on RNA expression of IDH genes. We derived a 90% 

confidence interval of hazard ratio estimates for IDH1/2/3 genes based on both global 

proteomic and gene expression data (Figs. S6A, S6B).

To obtain the effect of IDH1 and IDH2 on survival in the H3 wild type group, we modeled 

the survival data as function of both IDH1 and IDH2 expression conditional on other 

covariates as follows:

Coxph OS, status H3Mut + age + gender + post_treatment + tumor_purity + IDH1pro * H3mut + IDH2pro
* H3mut + IDH1pro * H3WT + IDH2pro * H3WT

For assessing the association between the joint effect of IDH1 and IDH2 proteins on overall 

survival in the H3 wild type group, we performed an anova test to compare the above Cox 

model with the following one:

Model0:Coxph OS, status H3Mut + age + gender + post_treatment + tumor_purity + IDH1pro * H3mut +
IDH2pro * H3mut

Let the absolute value of the estimated coefficients of IDH1pro*H3mut and IDH1pro*H3WT 

be m1 and w1 while those for IDH2pro*H3mut and IDH2pro*H3WT be m1 and w1. We 

calculate the weighted score of IDH1 and IDH2 for the mutant samples as
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IDH1/2mutpro *  H3mut =
m1

m1  + m2
*  IDH1pro * H3mut +

m2
m1  + m2

* IDH2pro * H3mut

and similarly for the H3 wild type samples as

IDH1/2WTpro *  H3WT =
w1

w1  + w2
*  IDH1pro * H3WT +

w2
w1  + w2

* IDH2pro * H3WT

In order to display the association between survival and weighted IDH1/2 scores in the H3 

wild type group, Kaplan-Meier curves were derived based on IDH1/2WT
pro (Hanzelmann et 

al., 2013); with median value chosen as the cut-off to stratify samples in higher and lower 

abundance groups (Fig. 6E).

We also performed Cox regression to evaluate the association between weighted score of 

IDH1 and IDH2 with survival conditional on other covariates as follows:

Coxph OS, status H3_mutation + age + gender + post_treatment + tumor_purity + IDH1/2mutpro *  H3mut

+ IDH1/2WTpro * H3WT

We derived 95% confidence interval of the Hazard ratio estimate and other covariates based 

on the above model (Fig. 6C).

We also assessed the association between wild type IDH1/2 proteins with survival using a 

second proteomic dataset containing 41 pediatric and young adult HGG patients without 

IDH1/2 mutants. Among the 41 samples, 12 samples were H3 mutant: 2 alive and 10 

deceased. And the remaining 29 samples (19 deceased and 10 alive) were H3 wild-type 

(Table S6). For survival analysis, we truncated the OS at 2000 days and treat samples with 

OS greater than 2000 days as censored samples. This left 17 samples with the deceased 

status in the H3 wild type group. Similar to the discovery dataset, Cox regression models 

were fitted on this second data set, with tumor location further included as a covariate. We 

used indicators for “cortical” and “midline” tumor location, while cerebellum was taken as 

the reference. Given that only few markers were available for this dataset, we were unable to 

derive tumor purity and include it as a covariate in the model. The KM curve based on 

weighted IDH1/2 score is displayed in Figure 6F and the 95% confidence interval of the 

hazard ratio of weighted score in H3 wild type and other covariates is displayed in Figure 

6D.

For pathway enrichment analysis in the pediatric cohort, we used the canonical and 

Hallmark database from Broad Institute’s molecular signature database (Liberzon et al., 

2015). We performed a Wilcoxon test to compare the distribution of signed p-values (from 

Cox regression analysis) of the genes within the pathways to the remaining genes in the 

dataset. We further consolidated the pathways into modules using Sumer (Savage et al., 

2019) (Fig. S6C). Note that we only report the pathway enrichment results from HGG wild 
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type as this group has reasonably higher sample size as opposed to the mutant group (Table 

S6).

Drug Connectivity Analysis for HGG—For the transcriptional connectivity analysis, an 

HGG-specific signature was first generated by comparing the mRNA levels between HGG 

and LGG samples using the Wilcoxon rank sum test. Genes with an FDR < 0.05 were 

considered differentially expressed and were subsequently filtered for probes measured in 

the L1000 assay (Subramanian et al., 2017). The resulting gene list was then used as input 

for iLINCS, a drug connectivity tool (Pilarczyk et al., 2019) and the “Perturbagen 

connectivity analysis” functionality was used to identify compounds with negative 

connectivity to the HGG-specific signature.

For the phosphoproteomic connectivity analysis, protein and phosphopeptide signatures 

were calculated by comparing HGG and LGG samples via the Wilcoxon rank sum test. 

Significant phosphopeptide and protein probes (FDR < 0.05) were then mapped to the P100 

peptide probes (Litichevskiy et al., 2018) and were used for subsequent analysis. Level 4 

P100 data were downloaded from the LINCS Data Portal (Stathias et al., 2019) and the 

median of each technical replicate was used to calculate the spearman correlation between 

each P100 experiment and the HGG-specific phosphoproteomic signature. The resulting 

connectivity scores were then aggregated to the compound level, by calculating the mean 

among all 7 P100 cell lines. To identify drug MOAs (Mechanisms of Action) that were 

enriched in the transcriptional and phosphoproteomic connectivity analysis we utilized the 

fgsea R package (https://www.biorxiv.org/content/10.1101/060012v2) by querying against 

MOA drug sets rather than gene sets. Results for multiple data types are included in Table 

S6.

Comparison of initial and progressed tumors—Our dataset contained 

proteogenomic profiles of 18 pairs of samples from the same patients. Out of these 18 pairs, 

13 of the primary tumors were from the initial disease occurrence, while in the remaining 

five cases the primary available sample was from a disease that is already classified as 

progression. Among the secondary samples, 11 are classified as disease progression and 

seven as recurrence. We analyzed the 18 pairs as cases of less advanced vs more advanced 

disease, and usually refer to them as initial vs recurrent samples. The mutations included in 

overlap analysis were the non-synonymous mutations in protein coding genes. Potential 

driver mutations were either genes with known roles in cancer (Bailey et al., 2018; Li et al., 

2015; Li et al., 2018b) that were found to be mutated, or the ones whose allele frequency 

increased sufficiently between initial and recurrent samples to indicate the signs of 

evolutionary selection (Merlo et al., 2006). Chromosome arm copy number activity was 

defined by comparing arm-level CNVs with their standard deviation across all samples. In 

particular, arm level amplification was declared if arm-level CNVs were over 1-fold SD 

above zero, while deletion if arm-level CNVs were more than 1-fold SD lower than zero.

Pathway score differences were computed by subtracting the ssGSEA score (Hanzelmann et 

al., 2013) of a given pathway in the initial sample from that of the recurrent sample.
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Germline variants in TP53—To screen for germline TP53 variants that are likely to be 

pathogenic to or causing Li-Fraunemi syndrome, we checked WGS data fromblood/normal 

samples in CBTTC (n=893). After filtering, we kept germline variants that were either 

reported before within Li-fraumeni syndrome patients in the literature according to 

professional version 2019Q2 of the Human Gene Mutation Database (HGMD)® (Stenson et 

al., 2017), or predicted to be deleterious in TP53, which are defined to be i) in the exonic/

splicing region, ii) not synonoymous SNVs, and iii) with minor allele frequency <0.001 in 

both of the gnomAD exome and genome databases (version 2.1.1) (Karczewski et al., 2019). 

Finally we obtained 19 TP53 variants in 19 CBTTC patients’ germline WGS data.

ADDITIONAL RESOURCES

Heatmap Web Server—We have developed a web application (http://pbt.cptac-data-

view.org/) which allows researchers to render interactive heatmaps of genes of interest 

across the cohort, allowing deeper exploration of trends among multiomic and clinical data. 

The underlying data consists of quantitative information on mutation status, protein 

abundance, RNA-Seq gene expression, copy number variation, and phosphosite expression 

for 218 samples when available. The portal has several views available, depending on the 

data types that the user would like to explore. These views include “all”, “mutation”, “rna”, 

“proteo”, “cnv”, and “phospho”.

The “all” view provides a multiomic view across multiple data types. Data tracks for each 

gene are labeled with the gene symbol followed by: “mut” -- (“Yes” for any type of 

mutation, “No” for wild type), “rna” -- standardized gene expression levels, or “proteo” -- 

standardized gene-level protein abundance. The “mutation”, “rna”, “proteo”, “cnv”, and 

“phospho” views visualize the individual data tracks. The “phospho” view appends the gene 

name with a truncated identifier with the amino acid location of the phosphosite, and the 

user can click the track to see the entire phosphosite identifier.

All views display the genomic and clinical annotation data as the top tracks. These tracks 

include survival status, grade, diagnosis, tumor location, and clustering analysis results, 

including an immune cluster assignment for each sample. The genomic annotation tracks 

include the mutation status for key genes, including BRAF status for LGG, RELA for EP, 

CTNNB1 for CP, and H3F3A for HGG .

The views can show data for the samples across all histological diagnoses or one individual 

diagnosis (i.e. EP, MB, ATRT, CP, HGG, ganglioglioma, and LGG).

The application can be accessed with any modern web browser through the following 

address: http://pbt.cptac-data-view.org. Users begin with a text field, where they can enter 

gene symbols for up to 30 genes. The genes will be used to generate an Excel file (.xls) and 

heatmap visualizations across all of the views.

Users can click any point on the interactive heatmap to view the underlying data, including 

sample identifier, data type, and value. They can then sort the heatmap by a given data track, 

in ascending or descending order. The sorting feature allows researchers to dynamically 

explore relationships and patterns among various molecular and clinical data types.
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RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Pei Wang (pei.wang@mssm.edu).

Materials Availability—N/A

Data and Code Availability—All raw genomic data is available upon access request 

through the Children’s Brain Tumor Tissue Consortium (https://cbttc.org/) and can be 

accessed through the Gabriella Miller Kids First Portal (https://kidsfirstdrc.org/). All raw 

proteomics data and processed proteogenomic data are available through the Clinical 

Proteomic Tumor Analysis Consortium Data Portal (https://cptac-data-

portal.georgetown.edu/cptacPublic/) and the Proteomics Data Commons (https://

pdc.cancer.gov/pdc/). In addition, all processed proteogenomic data sets as well as clinical 

meta information can be queried, visualized and downloaded from an interactive ProTrack 
data portal http://pbt.cptac-data-view.org/, as well as through the PedcBioPortal (https://

pedcbioportal.kidsfirstdrc.org/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Proteomic based clustering of pediatric brain tumors.
A. Summary of pediatric brain tumor cohort.

B. Presence of omics data sets for each of the 218 tumor samples. For each sample, the 

clinical status at sample collection (i.e., post- mortem, post-treatment or treatment naive) is 

also reported.

C. Kaplan Meier curves for OS of patients stratified by proteomic cluster.

D. Proteomic clusters and differentially expressed proteins allocated to 14 gene clusters (top 

heatmap). Each row represents a proteomic cluster, while each column represents a protein. 

Red/blue colors denote up/down regulation patterns of different proteins in a cluster. 

Distributions of diagnoses, clinical outcomes, and mutation status among the 8 clusters (top 

left pie plots), and gene members of key pathways enriched in each gene group (bottom 

heatmap) are shown. For each pathway, the averaged ssGSEA score in each protein cluster 
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based on global proteomic (Protein) and RNA-seq (RNA-seq) data are illustrated to the 

right.

E. Heatmap of kinase activity scores for the CP tumors (n=16). Silhouette scores (top) 

measures the cohesiveness of tumors classified as C4 and C8 based on kinase activity score. 

Kinases involved in AKT1 or ERK1/2 signaling are highlighted in the heatmap.

F. Diagram illustrating differences between C4 and C8 CP tumors in terms of 

phosphorylation abundance and kinase activity for AKT and ERK1/2 signaling members.

G. MRM measurements validated different activities of proteins and phosphoproteins 

between C4 and C8 CPs. The numbers annotated under each pair of boxplots correspond to 

AUC (area under the curve) for classifying the two groups of CP using the corresponding 

protein/phosphosite measurement.
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Figure 2. Immune infiltration in pediatric brain tumors.
A. Heatmap illustrating cell type compositions, and activities of selected individual gene/

proteins and pathways across 5 immune clusters. The heatmap in the first section illustrates 

the immune/stromal signatures from xCell. The heatmap in the second section illustrates 

signatures of microglia, neurons and oligodendrocytes derived from single cell sequencing 

data from Darmanis et al (2017). RNA and protein abundance of key immune-related 

markers, and ssGSEA scores based on global proteomic data for biological pathways 

upregulated in different immune groups are illustrated in the remaining sections.

B. Contour plot of two-dimensional density based on Macrophage (y-axis) and Microglia 

scores (x-axis) for different immune clusters. For each immune cluster, key upregulated 

pathways significant at 10% FDR are reported based on RNAseq (R), global proteomic (P) 

and phospho-proteomic data (Ph) in the annotation boxes. For Cold-mixed and Cold-

medullo clusters, pathways upregulated in both clusters are reported.
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C. Distribution of pathway scores of Signaling by WNT and Oxidative Phosphorylation 

based on global proteomic data and RNA stratified by immune clusters.

D. Heatmap showing the comparison between immune clusters (columns) with proteomic 

clusters and different histologies (rows). Each row sums to one, with different entries 

showing the proportion of tumors allocated to different immune clusters.

E. xCell immune/stromal and antigen presentation signatures in BRAFV600E or BRAFFusion 

compared to BRAFWT in LGG.

F. Distribution of RNA levels of HLA-A, HLA-B and HLA-C in LGG tumors with different 

BRAF statuses.

G. Distribution of macrophage and microglia polarization (M2-M1) in LGG tumors with 

different BRAF statuses.
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Figure 3. Impact of genomic alterations on transcriptomic, proteomic and phosphoproteomic 
abundances.
A. Distribution of protein abundance of BRAF, CTNNB1, and NF1 across tumor samples 

stratified by different mutation status and diagnoses. Symbols *, **, and *** correspond to 

p-values less than 0.1, 0.01 and 0.001, respectively.

B. DNA copy number amplification/deletion frequencies along chromosome 1 among EP, 

HGG and MB samples. Genes with detected CNV-RNA/protein or CNV-RNA/protein/

phospho cascade events are labelled as vertical bars in the top track.

C. Distribution of DNA copy number (log ratio), RNA and protein abundance of 

RABGAP1L, RAB3GAP2 and FDPS stratified by their amplification statuses in EP, MB and 

HGG tumors. For RABGAP1L, Symbols *, ** and *** mean the same as in A. “ns” stands 

for “not significant” (p-value>0.1).

D. Illustration of the impact of CTNNB1 mutation on RNA and protein abundance in CP 

samples. x-axis (y-axis) represents signed -log10 FDR for testing the association between 
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protein abundances (RNAs) and CTNNB1 mutation. Cell-Cell Contact Zone (Coagulation) 

pathway is enriched in the set of proteins up (down) regulated in CTNNB1 mutant samples. 

A few members of the WNT Signaling pathway whose protein or phosphosites are 

associated with CTNNB1 mutation are highlighted in red. Phosphosites are annotated with 

“(P)” in their gene symbols.

E. Distribution of protein and phosphosite abundances among CTNNB1 mutant and 

CTNNB1 wild-type CP tumors for known key members of the WNT Signaling pathway 

interacting with β-Catenin and transcription factors regulated by CTNNB1. Symbols *, ** 

and *** correspond to FDR less than 0.1, 0.01 and 0.001, respectively. “ns” stands for “not 

significant” (FDR >0.1).

F. Illustration of the regulatory role of β-Catenin.
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Figure 4. Phosphoproteomic analysis of kinase activity
A. Heatmaps showing the global abundance (right panel) and the kinase activity score (left 

panel) of selected kinases across different histologies. For each kinase, the Pearson’s 

correlation between its global abundance and kinase activity within each histology is shown 

in the middle panel.

B. Scatterplot showing the global abundance of a particular kinase (x-axis) versus the 

phospho-abundance of the targeted substrates (y-axis). First row is based on the data from 

the discovery cohort; while the second row displays the data based on the validation cohort.

C. Heatmap showing global proteomic abundance of CDK1, CDK2 and CAMK2A as well 

as phosphorylation abundance of MCM2 Ser 139, GJA1 Ser 325, GJA1 Ser 314, SYN1 Ser 

568 and SYN1 Ser 605 among HGG in the discovery and validation cohorts.

D. Diagram showing kinase-substrate associations involved in CNS development in LGG 

(top-middle panel). Scatter plots showing the association between the global (or phospho) 
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abundance of each kinase (x-axis) and the phospho-abundance of the corresponding 

substrate (y-axis).
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Figure 5. Insights from proteogenomic analysis of LGG
A. Heatmap illustrating ssGSEA scores of selected pathways differentially expressed 

between LGG tumors with different BRAF statuses based on global proteomic data. Dot-

plot on the left-side summarizes ssGSEA pathway scores based on RNA data among 

samples with different BRAF statuses.

B. Distributions of RNA, TMT protein abundance (TMT Global), and MRM protein 

abundance (MRM Global) of AKT1, AKT2, and AKT1S1 in samples with different BRAF 
alteration statuses. FDR levels of two-sample comparisons between BRAFV600E/ 
BRAFFusion and BRAFWT are annotated.

C. The network topology representing the LGG phosphosite co-expression network module 

enriched in sites upregulated in BRAFv600E compared to BRAFWT tumors. Phosphosites 

mapping to genes in the HNRNP family or contained in the MYC Targets pathway are 

highlighted in red and blue, respectively.
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D. Scatterplot displaying the association between each phosphosite’s abundance with the 

global abundance of AKT2 (y-axis) versus the association with BRAFV600E (x-axis). 

Phosphosites contained in the network module in C are highlighted in red. Boxplots 

illustrate the distribution of the activity scores (ssGSEA) of the network module in C based 

on phosphoproteomic data in samples with different BRAF status. Pie-plot shows the 

proportion of phosphosites contained in the network module in C whose abundances are 

associated at 5% FDR with the global abundance of AKT2.
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Figure 6. Insights from proteogenomic analysis of HGG
A. Scatterplot showing OS of HGG patients versus the global protein abundance of IDH1 

and IDH2 in the tumors.

B. Heatmap of global abundance of IDH proteins in the discovery cohort.

C, D. 95% CI of hazard ratio coefficients from Cox-regression for IDH1/2 scores and other 

covariates based on the discovery cohort (panel C) and Data Set 2 (D).

E, F. Kaplan-Meier curves of overall survival for HGG H3Mut samples (grey), H3WT 

samples with low IDH1/2 abundance (red) and H3WT tumors with high IDH1/2 abundance 

(blue) for the discovery cohort (panel E) and the validation cohort (F).G. Illustration of drug 

target analysis result. The bottom-left heatmap illustrates the targeting genes (rows) of each 

detected drugs (columns). For each gene, the z-score comparing its RNA and proteomic 

abundances between HGG and LGG is shown in the bottom-right heatmap. Mechanism of 
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actions are annotated on the top of the heatmap together with the resulting score from the 

cMAP analysis.

H. Distribution of kinase activity scores of CDK1, CDK2 and MAPK1 among HGG and 

LGG tumors, with the latter further stratified by BRAF status.
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Figure 7. Comparison between Initial and Recurrent Tumors
A. (a) Clinical properties and genomic characterization of 18 pairs of IN vs RP tumors. The 

bar plot illustrates the number of non-synonymous mutations in IN and RP tumors with the 

number of shared mutations being represented by the shaded area. The potential driver 

mutation track shows the allele frequencies of somatic mutations of known oncogenes and 

tumor suppressor genes. Chromosome arm aberrations of each sample and the change of 

tumor grade from IN to RP of each patient are also shown. (b) Differences in ssGSEA score 

between RP and IN tumors of key molecular pathways associated with different proteomic 

clusters. The annotation at the bottom indicates the diagnosis and clinical event IDs of the 

paired samples for each patient. For example, “Epen.496.3319” refers to a pair of EP tumors 

with IDs: 7316–496 and 7316–3319.
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B. Distribution of Spearman’s correlation between the proteomic abundance of any pair of 

tumors within a particular histology. Correlations between the 18 paired IN-RP samples 

were further labeled in the violin plots.

C. Distribution of kinase activity scores of MAPK1/3 among all LGG samples, LGG 

samples allocated to C4 and LGG samples allocated to C8. IN and RP samples of patients 

LGG.350.944 and LGG.173.2154 are highlighted.
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