Skip to main content
eScholarship
Open Access Publications from the University of California

Frontiers of Biogeography

Frontiers of Biogeography bannerUC Merced

About

Frontiers of Biogeography (FoB) is the scientific journal of the International Biogeography Society (TIBS, www.biogeography.org), a not-for-profit organization dedicated to promotion of and public understanding of the biogeographical sciences.  TIBS launched FoB to provide an independent forum for biogeographical science, with the academic standards expected of a journal operated by and for an academic society.

Issue cover
Vicki Ann Funk (1947–2019) was one of the founding members and the first female president of the International Biogeography Society, and an inspiration for many students and young researchers throughout the years. In a profile paper in this issue of Frontiers of Biogeography, Gillespie and Whittaker provide a memoir of her long career and energising enthusiasm that can be seen in this fieldwork picture. Photo credit: Mauricio Diazgranados.

Research Articles

How perilous are broad-scale correlations with environmental variables?

Many studies correlate geographic variation of biotic variables (e.g., species ranges, species richness, etc.) with variation in environmental variables (climate, topography, history). Often, the resulting correlations are interpreted as evidence of causal links. However, both the dependent and independent variables in these analyses are strongly spatially structured. Several studies have suggested that spatially structured variables may be significantly correlated with one another despite the absence of a causal link between them. In this study we ask: if two variables are spatially structured, but causally unrelated, how strong is the expected correlation between them? As a specific example, we consider the correlations between broad-scale variation in gamma species richness and climatic variables. Are these correlations likely to be statistical artefacts? To answer these questions, we randomly generated pseudo-climatic variables that have the same range and spatial autocorrelation as temperature and precipitation in the Americas. We related mammal and bird species richness both to the real and the pseudo-climatic variables. We also observed the correlations among pseudo-climate simulations. Correlations among randomly generated, spatially unstructured, variables are very small. In contrast, the median correlations between spatially structured variables are near r2=0.1 – 0.3, and the 95% confidence limits extend to r2=0.6 – 0.7. Viewing this as a null expectation, given spatially structured variables, it is worth nothing that published richness–climate correlations are typically marginally stronger than these values. However, many other published richness–environment correlations would fail this test. Tests of the “predictive ability” of a correlation cannot reliably distinguish correlations due to spatial structure from causal relationships. Our results suggest a three-part update of Tobler’s “First Law of Geography”: #1) Everything in geography that is spatially structured will be collinear. #2) Near things are more related than distant things. #3) The more strongly spatially structured two variables are, the stronger the collinearity between them will be.

  • 1 supplemental PDF

Does habitat stability structure intraspecific genetic diversity? It’s complicated...

Regional phylogeographic studies have long been conducted in the southeastern United States for a variety of species. With some exceptions, many of these studies focus on single species or single clades of organisms, and those considering multiple species tend to focus on deep historical breaks causing differentiation. However, in many species more recent factors may be influencing genetic diversity. To understand the roles of historic and contemporary processes in structuring genetic diversity, we reanalyzed existing genetic data from Southeast of North America using approaches gleaned from phylogeographic and landscape genetic literature that were implemented across species including AMOVAs, PCoAs, Species Distribution Modelling, and tests of isolation by distance, environment, and habitat instability. Genetic variance was significantly partitioned by ecoregions, watersheds, and across phylogeographic breaks in the majority of species. Similarly, genetic variation was significantly associated with some combination of geographic or environmental distance or habitat instability in most species. Patterns of genetic variation were largely idiosyncratic across species. While habitat instability over time is significantly correlated with genetic diversity in some species, it appears generally less important than isolation by geographic or environmental distance. Our results suggest that many factors, both historical and contemporary, impact genetic diversity within a species, and more so, that these patterns aren’t always similar in closely related species. This supports the importance of species- specific factors and cautions against assumptions that closely related species will respond to historical and contemporary forces in similar ways.

  • 3 supplemental ZIPs

Opinions, Perspectives & Reviews

The onset of grasses in the Amazon drainage basin, evidence from the fossil record

Poaceae (the grass family) originated in the Cretaceous, but first dominate the palynological records of the Amazon drainage basin (ADB) in the Neogene (23 to 2.5 million years ago (Ma)). However, the ecological role of grasses in the landscape during this time remains to be resolved. In this paper, we summarise the global significance of grasses and the relevance of the fossil record, and evaluate the history of the grasses in the ADB. We present a 3-stage model of the changing role of grasses, which we based on a revision of Neogene depositional environments, the palynological record, and modern grass distribution in the Neotropics. Our model comprises the following hypotheses: (H1) assumes that from c. 23 to 9 Ma western Amazonia was dominated by a megawetland (the ‘Pebas system’) that harboured large amounts of (aquatic?) grasses. In (H2) we propose that from c. 9 Ma Andean uplift prompted megafans (extremely large alluvial fans) that extended from the Andes into the lowlands. Meanwhile, the ‘Pebas’ megawetland gradually transformed into a fluvial system. In this scenario, grasses would have had a competitive advantage and were able to colonise the newly formed megafan and fluvial landscapes. Finally, in (H3) we suggest that landscape dynamics and climatic change intensified from c. 3.5 Ma, allowing for a renewed expansion of the grasses. In addition, both the fossil and molecular records suggest that from c. 5 Ma grasses were firmly established in the tropical alpine vegetation (páramo), the tropical lowland floodplains (várzeas), and savannas (cerrado). Although further study will have to confirm the precise nature of the ADB grass history, we anticipate that abiotic processes during the Neogene and Quaternary left a strong imprint in the grass phytogeography of northern South America.

  • 3 supplemental ZIPs

FB Information

Cover

Cover

Vicki Ann Funk (1947–2019) was one of the founding members and the first female president of the International Biogeography Society, and an inspiration for many students and young researchers throughout the years. In a profile paper in this issue of Frontiers of Biogeography, Gillespie and Whittaker provide a memoir of her long career and energising enthusiasm that can be seen in this fieldwork picture. Photo credit: Mauricio Diazgranados.