Many plant species exhibit variable and synchronized reproduction, or masting, but less is known of the spatial scale of synchrony, effects of climate, or differences between patterns of pollen and seed production. We monitored pollen and seed cone production for seven Pinus ponderosa populations (607 trees) separated by up to 28 km and 1,350 m in elevation in Boulder County, Colorado, USA for periods of 4-31 years for a mean per site of 8.7 years for pollen and 12.1 for seed cone production. We also analyzed climate data and a published dataset on 21 years of seed production for an eighth population (Manitou) 100 km away. Individual trees showed high inter-annual variation in reproduction. Synchrony was high within populations, but quickly became asynchronous among populations with a combination of increasing distance and elevational difference. Inter-annual variation in temperature and precipitation had differing influences on seed production for Boulder County and Manitou. We speculate that geographically variable effects of climate on reproduction arise from environmental heterogeneity and population genetic differentiation, which in turn result in localized synchrony. Although individual pines produce pollen and seed, only one-third of the covariation within trees was shared. As compared to seed cones, pollen had lower inter-annual variation at the level of the individual tree and was more synchronous. However, pollen and seed production were similar with respect to inter-annual variation at the population level, spatial scales of synchrony and associations with climate. Our results show that strong masting can occur at a localized scale, and that reproductive patterns can differ between pollen and seed cone production in a hermaphroditic plant.