Skip to main content
eScholarship
Open Access Publications from the University of California

Residual resistance ratio measurement system for Nb3Sn wires extracted from Rutherford cables

(2025)

Residual resistance ratio (RRR) of superconducting strands is an important parameter for magnet electrical stability. RRR serves as a measure of the low-temperature electrical conductivity of the copper within a conductor that has a copper stabilization matrix. For Nb3Sn, due to the need of a reaction heat treatment, the technical requirements for high quality measurements of strands extracted from Rutherford cables are particularly demanding. Quality of wire, cabling deformation, heat treatment temperature, heat treatment atmosphere, sample handling, and measurement methods can all affect the RRR. Therefore, as an integral part of the electrical quality control (QC) of Nb3Sn Rutherford cables manufactured at the Lawrence Berkeley National Laboratory, it was prudent that we established a RRR measurement system that can isolate the assessment of cable-fabrication-related impacts from sample preparation and measurement factors. Here we describe a bespoke cryocooler-based measurement system, capable of measuring RRR of over 80 samples in a single cooldown. The samples are mounted on custom-designed printed circuit boards that accommodate the shape of strands extracted from a Rutherford cable without added deformation, which we will show is critical in ensuring that the measurements accurately represent the RRR values of the conductor within the cable. Using this sample mounting solution, we routinely measure the overall RRR of the strand as well as individual intra-strand sections corresponding to both cable edges and cable broad faces with high reproducibility. Such measurements provide valuable information on the variation of RRR along the length of the strands as well as across strand productions and cable runs over time.

Cover page of Search for Fractionally Charged Particles with CUORE

Search for Fractionally Charged Particles with CUORE

(2024)

The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5  cm×5  cm×5  cm TeO_{2} crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in ^{130}Te. Unprecedented in size among cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic throughgoing particles. Using the first tonne year of CUORE's exposure, we perform a search for hypothesized fractionally charged particles (FCPs), which are well-motivated by various standard model extensions and would have suppressed interactions with matter. Across the searched range of charges e/24-e/2 no excess of FCP candidate tracks is observed over background, setting leading limits on the underground FCP flux with charges e/24-e/5 at 90% confidence level. Using the low background environment and segmented geometry of CUORE, we establish the sensitivity of tonne-scale subkelvin detectors to diverse signatures of new physics.

Cover page of Near-complete extraction of maximum stored energy from large-core fibers using coherent pulse stacking amplification of femtosecond pulses

Near-complete extraction of maximum stored energy from large-core fibers using coherent pulse stacking amplification of femtosecond pulses

(2024)

High field science relies on ultrashort pulse lasers with multi-joule pulse energies for studying light–matter interactions under extreme conditions and for driving particle accelerators and secondary radiation sources of x rays, gamma rays, neutrons, positrons, muons, and protons. Next-generation laser drivers will require a 103−104 times increase in pulse repetition rates, producing multi-joule energies at multi-kilowatt average powers to enable practical applications in nuclear engineering, advanced materials, medicine, biology, homeland security, and high-energy physics. Spatially coherently combined femtosecond fiber lasers are recognized as a pathway to these next-generation drivers, with significant practical advantages including high efficiency and the possibility of compact integration. However, chirped pulse amplification in fibers is capable of extracting only a small fraction (usually ∼1%) of the maximum stored energy. Here we demonstrate near-complete maximum stored energy extraction with low accumulated nonlinearity from a large-core fiber amplifier using coherent pulse stacking amplification. We have amplified a 81-pulse stacking burst in a 85 µm core chirally coupled core Yb-doped fiber, extracting up to 9.5 mJ (∼90% of stored energy) with <4.5 radians of accumulated nonlinear phase, temporally combined this burst into a single pulse, and achieved 4.2 mJ pulses of 313 fs bandwidth-limited duration after compression. This represents, to our knowledge, the highest energy extracted and compressed into a femtosecond pulse from a single fiber amplifier, enabling approximately two orders of magnitude size reduction of future high-energy coherently spatially combined fiber laser arrays.

Cover page of Spectroscopic search for optical emission lines from dark matter decay

Spectroscopic search for optical emission lines from dark matter decay

(2024)

We search for narrow-line optical emission from dark matter decay by stacking dark-sky spectra from the Dark Energy Spectroscopic Instrument (DESI) at the redshift of nearby galaxies from DESI's Bright Galaxy and Luminous Red Galaxy samples. Our search uses regions separated by 5 to 20 arcsec from the centers of the galaxies, corresponding to an impact parameter of approximately 50 kpc. No unidentified spectral line shows up in the search, and we place a line flux limit of 10-19 ergs/s/cm2/arcsec2 on emissions in the wavelength range of 2000-9000A∘. This places the tightest constraints yet on the two-photon decay of dark matter in the mass range of 5 to 12 eV, with a particle lifetime exceeding 3×1025 s. This detection limit also implies that the line surface brightness contributed from all dark matter along the line of sight is at least 2 orders of magnitude lower than the measured extragalactic background light (EBL), ruling out the possibility that narrow optical-line emission from dark matter decay is a major source of the EBL.

Cover page of The 4D Camera: An 87 kHz Direct Electron Detector for Scanning/Transmission Electron Microscopy

The 4D Camera: An 87 kHz Direct Electron Detector for Scanning/Transmission Electron Microscopy

(2024)

We describe the development, operation, and application of the 4D Camera-a 576 by 576 pixel active pixel sensor for scanning/transmission electron microscopy which operates at 87,000 Hz. The detector generates data at ∼480 Gbit/s which is captured by dedicated receiver computers with a parallelized software infrastructure that has been implemented to process the resulting 10-700 Gigabyte-sized raw datasets. The back illuminated detector provides the ability to detect single electron events at accelerating voltages from 30 to 300 kV. Through electron counting, the resulting sparse data sets are reduced in size by 10--300× compared to the raw data, and open-source sparsity-based processing algorithms offer rapid data analysis. The high frame rate allows for large and complex scanning diffraction experiments to be accomplished with typical scanning transmission electron microscopy scanning parameters.

Cover page of First measurement of the total inelastic cross section of positively charged kaons on argon at energies between 5.0 and 7.5 GeV

First measurement of the total inelastic cross section of positively charged kaons on argon at energies between 5.0 and 7.5 GeV

(2024)

ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/c beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380±26 mbarns for the 6 GeV/c setting and 379±35 mbarns for the 7 GeV/c setting.

Cover page of The rate of extreme coronal line emitting galaxies in the Sloan Digital Sky Survey and their relation to tidal disruption events

The rate of extreme coronal line emitting galaxies in the Sloan Digital Sky Survey and their relation to tidal disruption events

(2024)

High-ionization iron coronal lines (CLs) are a rare phenomenon observed in galaxy and quasi-stellar object spectra that are thought to be created by high-energy emission from active galactic nuclei and certain types of transients. In cases known as extreme coronal line emitting galaxies (ECLEs), these CLs are strong and fade away on a time-scale of years. The most likely progenitors of these variable CLs are tidal disruption events (TDEs), which produce sufficient high-energy emission to create and sustain the CLs over these time-scales. To test the possible connection between ECLEs and TDEs, we present the most complete variable ECLE rate calculation to date and compare the results to TDE rates from the literature. To achieve this, we search for ECLEs in the Sloan Digital Sky Survey (SDSS). We detect sufficiently strong CLs in 16 galaxies, more than doubling the number previously found in SDSS. Using follow-up spectra from the Dark Energy Spectroscopic Instrument and Gemini Multi-Object Spectrograph, Wide-field Infrared Survey Explorer mid-infrared observations, and Liverpool Telescope optical photometry, we find that none of the nine new ECLEs evolve in a manner consistent with that of the five previously discovered variable ECLEs. Using this sample of five variable ECLEs, we calculate the galaxy-normalized rate of variable ECLEs in SDSS to be (equeation presented). Our rates are one to two orders of magnitude lower than TDE rates from the literature, which suggests that only 10-40 per cent of all TDEs produce variable ECLEs. Additional uncertainties in the rates arising from the structure of the interstellar medium have yet to be included.

Cover page of Toward the Discovery of New Elements: Production of Livermorium (Z=116) with Ti50

Toward the Discovery of New Elements: Production of Livermorium (Z=116) with Ti50

(2024)

The ^{244}Pu(^{50}Ti,xn)^{294-x}Lv reaction was investigated at Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The experiment was aimed at the production of a superheavy element with Z≥114 by irradiating an actinide target with a beam heavier than ^{48}Ca. Produced Lv ions were separated from the unwanted beam and nuclear reaction products using the Berkeley Gas-filled Separator and implanted into a newly commissioned focal-plane detector system. Two decay chains were observed and assigned to the decay of ^{290}Lv. The production cross section was measured to be σ_{prod}=0.44(_{-0.28}^{+0.58})  pb at a center-of-target center-of-mass energy of 220(3) MeV. This represents the first published measurement of the production of a superheavy element near the "island of stability," with a beam of ^{50}Ti and is an essential precursor in the pursuit of searching for new elements beyond Z=118.

Cover page of Probing the Connection between IceCube Neutrinos and MOJAVE AGN

Probing the Connection between IceCube Neutrinos and MOJAVE AGN

(2024)

Active galactic nuclei (AGN) are prime candidate sources of the high-energy, astrophysical neutrinos detected by IceCube. This is demonstrated by the real-time multimessenger detection of the blazar TXS 0506+056 and the recent evidence of neutrino emission from NGC 1068 from a separate time-averaged study. However, the production mechanism of the astrophysical neutrinos in AGN is not well established, which can be resolved via correlation studies with photon observations. For neutrinos produced due to photohadronic interactions in AGN, in addition to a correlation of neutrinos with high-energy photons, there would also be a correlation of neutrinos with photons emitted at radio wavelengths. In this work, we perform an in-depth stacking study of the correlation between 15 GHz radio observations of AGN reported in the MOJAVE XV catalog, and 10 yr of neutrino data from IceCube. We also use a time-dependent approach, which improves the statistical power of the stacking analysis. No significant correlation was found for both analyses, and upper limits are reported. When compared to the IceCube diffuse flux, at 100 TeV and for a spectral index of 2.5, the upper limits derived are ∼3% and ∼9% for the time-averaged and time-dependent cases, respectively.

Cover page of Properties of the Db256 decay chain

Properties of the Db256 decay chain

(2024)

Experiments were performed at Lawrence Berkeley National Laboratory's 88-Inch Cyclotron Facility to study the decays of neutron-deficient dubnium isotopes. These isotopes were produced in the Pb206(V51, xn)Db255,256 reaction, and excitation functions were measured. This article reports on the observed properties of the Db256 decay chain. The produced Db256 nuclei were separated from unreacted-beam material and reaction byproducts with the Berkeley Gas-filled Separator (BGS) before being implanted into a double-sided silicon strip detector at the BGS focal plane. Decay properties of Db256 and its daughters were then extracted from the analysis of correlations between implanted Db nuclei with α decay chains and spontaneous fission (SF) events. In total, 86 decay chains and 38 SF events were observed, giving increased statistics as compared to previous studies. Improved decay data are presented for Db256 and its daughter isotopes Lr252, No252, Md248, Fm248, Es244, and Cf244.