Skip to main content
eScholarship
Open Access Publications from the University of California

About

Interactions between matter and energy shape our world and the universe around us, and applications of matter and energy are hugely important to our day-to-day lives. Physical Sciences Area researchers study these interactions at scales ranging from the outermost reaches of the cosmos to the innermost confines of subatomic particles.

Physical Sciences

There are 8539 publications in this collection, published between 1950 and 2024.
Accelerator Tech-Applied Phys (1549)

Laser-PlasmaWakefield Acceleration with Higher Order Laser Modes

Laser-plasma collider designs point to staging of multiple accelerator stages at the 10 GeV level, which are to be developed on the upcoming BELLA laser, while Thomson Gamma source designs use GeV stages, both requiring efficiency and low emittance. Design and scaling of stages operating in the quasi-linear regime to address these needs are presented using simulations in the VORPAL framework. In addition to allowing symmetric acceleration of electrons and positrons, which is important for colliders, this regime has the property that the plasma wakefield is proportional to the transverse gradient of the laser intensity profile. We demonstrate use of higher order laser modes to tailor the laser pulse and hence the transverse focusing forces in the plasma. In particular, we show that by using higher order laser modes, we can reduce the focusing fields and hence increase the matched electron beam radius, which is important to increased charge and efficiency, while keeping the low bunch emittance required for applications.

1546 more worksshow all
Engineering (869)

Measurement of electroweak production of a W boson in association with two jets in proton–proton collisions at s=13Te

A measurement is presented of electroweak (EW) production of a W boson in association with two jets in proton-proton collisions at s=13Te . The data sample was recorded by the CMS Collaboration at the LHC and corresponds to an integrated luminosity of 35.9 fb-1 . The measurement is performed for the ℓν jj final state (with ℓν indicating a lepton-neutrino pair, and j representing the quarks produced in the hard interaction) in a kinematic region defined by invariant mass mjj>120Ge and transverse momenta pTj>25Ge . The cross section of the process is measured in the electron and muon channels yielding σEW(Wjj)=6.23±0.12(stat)±0.61(syst)pb per channel, in agreement with leading-order standard model predictions. The additional hadronic activity of events in a signal-enriched region is studied, and the measurements are compared with predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. Limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are -2.3

Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube

We present the results of the first combined dark matter search targeting the Galactic Center using the ANTARES and IceCube neutrino telescopes. For dark matter particles with masses from 50 to 1000 GeV, the sensitivities on the self-annihilation cross section set by ANTARES and IceCube are comparable, making this mass range particularly interesting for a joint analysis. Dark matter self-annihilation through the τþτ−, μþμ−, bb¯, and WþW− channels is considered for both the Navarro-Frenk-White and Burkert halo profiles. In the combination of 2101.6 days of ANTARES data and 1007 days of IceCube data, no excess over the expected background is observed. Limits on the thermally averaged dark matter annihilation cross section hσAυi are set. These limits present an improvement of up to a factor of 2 in the studied dark matter mass range with respect to the individual limits published by both collaborations. When considering dark matter particles with a mass of 200 GeV annihilating through the τþτ− channel, the value obtained for the limit is 7.44 × 10−24 cm3 s−1 for the Navarro-Frenk-White halo profile. For the purpose of this joint analysis, the model parameters and the likelihood are unified, providing a benchmark for forthcoming dark matter searches performed by neutrino telescopes.

Development of Wind-and-React Bi-2212 Accelerator Magnet Technology

We report on the progress in our R&D program, targeted to develop the technology for the application of Bi2Sr2CaCu2Ox (Bi-2212) in accelerator magnets. The program uses subscale coils, wound from insulated cables, to study suitable materials, heat treatment homogeneity, stability, and effects ofmagnetic field and thermal and electro-magnetic loads. We have addressed material and reaction related issues and report onthe fabrication, heat treatment, and analysis of subscale Bi-2212 coils. Such coils can carry a current on the order of 5000 A and generate, in various support structures, magnetic fields from 2.6 to 9.9 T. Successful coils are therefore targeted towards a hybrid Nb3Sn-HTS magnet which will demonstrate the feasibility of Bi-2212 for accelerator magnets, and open a new magnetic field realm, beyond what is achievable with Nb3Sn.

866 more worksshow all
Nuclear Science (3266)

Excitation Function for the 74Se(18O,p3n) Reaction

The 74Se(18O,p3n)88gNb excitation function was measured and a maximum cross section of 495+-5 mb was observed at and 18O energy of 74.0 MeV. Experimental cross sections were compared to theoretical calculations using the computer code ALICE-91 and the values were found to be in good agreement. The half life of 88gNb was determined to be around 14.56+-0.11 min.

Classification of Nuclear Reactor Operations Using Spatial Importance and Multisensor Networks

Distributed multisensor networks record multiple data streams that can be used as inputs to machine learning models designed to classify operations relevant to proliferation at nuclear reactors. The goal of this work is to demonstrate methods to assess the importance of each node (a single multisensor) and region (a group of proximate multisensors) to machine learning model performance in a reactor monitoring scenario. This, in turn, provides insight into model behavior, a critical requirement of data-driven applications in nuclear security. Using data collected at the High Flux Isotope Reactor at Oak Ridge National Laboratory via a network of Merlyn multisensors, two different models were trained to classify the reactor’s operational state: a hidden Markov model (HMM), which is simpler and more transparent, and a feed-forward neural network, which is less inherently interpretable. Traditional wrapper methods for feature importance were extended to identify nodes and regions in the multisensor network with strong positive and negative impacts on the classification problem. These spatial-importance algorithms were evaluated on the two different classifiers. The classification accuracy was then improved relative to baseline models via feature selection from 0.583 to 0.839 and from 0.811 ± 0.005 to 0.884 ± 0.004 for the HMM and feed-forward neural network, respectively. While some differences in node and region importance were observed when using different classifiers and wrapper methods, the nodes near the facility’s cooling tower were consistently identified as important—a conclusion further supported by studies on feature importance in decision trees. Node and region importance methods are model-agnostic, inform feature selection for improved model performance, and can provide insight into opaque classification models in the nuclear security domain.

Results on total and elastic cross sections in proton–proton collisions at s = 200 GeV

We report results on the total and elastic cross sections in proton-proton collisions at s=200 GeV obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section was measured in the squared four-momentum transfer range 0.045≤−t≤0.135 GeV2. The value of the exponential slope parameter B of the elastic differential cross section dσ/dt∼e−Bt in the measured −t range was found to be B=14.32±0.09(stat.)−0.28+0.13(syst.) GeV−2. The total cross section σtot, obtained from extrapolation of the dσ/dt to the optical point at −t=0, is σtot=54.67±0.21(stat.)−1.38+1.28(syst.) mb. We also present the values of the elastic cross section σel=10.85±0.03(stat.)−0.41+0.49(syst.) mb, the elastic cross section integrated within the STAR t-range σeldet=4.05±0.01(stat.)−0.17+0.18(syst.) mb, and the inelastic cross section σinel=43.82±0.21(stat.)−1.44+1.37(syst.) mb. The results are compared with the world data.

3263 more worksshow all
Physics (4239)

Measurement of electroweak production of a W boson in association with two jets in proton–proton collisions at s=13Te

A measurement is presented of electroweak (EW) production of a W boson in association with two jets in proton-proton collisions at s=13Te . The data sample was recorded by the CMS Collaboration at the LHC and corresponds to an integrated luminosity of 35.9 fb-1 . The measurement is performed for the ℓν jj final state (with ℓν indicating a lepton-neutrino pair, and j representing the quarks produced in the hard interaction) in a kinematic region defined by invariant mass mjj>120Ge and transverse momenta pTj>25Ge . The cross section of the process is measured in the electron and muon channels yielding σEW(Wjj)=6.23±0.12(stat)±0.61(syst)pb per channel, in agreement with leading-order standard model predictions. The additional hadronic activity of events in a signal-enriched region is studied, and the measurements are compared with predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. Limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are -2.3

Detection of sub-MeV dark matter with three-dimensional Dirac materials

We propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of O(meV) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculate the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.

Deep Multi-object Spectroscopy to Enhance Dark Energy Science from LSST

Community access to deep (i ~ 25), highly-multiplexed optical and near-infrared multi-object spectroscopy (MOS) on 8-40m telescopes would greatly improve measurements of cosmological parameters from LSST. The largest gain would come from improvements to LSST photometric redshifts, which are employed directly or indirectly for every major LSST cosmological probe; deep spectroscopic datasets will enable reduced uncertainties in the redshifts of individual objects via optimized training. Such spectroscopy will also determine the relationship of galaxy SEDs to their environments, key observables for studies of galaxy evolution. The resulting data will also constrain the impact of blending on photo-z's. Focused spectroscopic campaigns can also improve weak lensing cosmology by constraining the intrinsic alignments between the orientations of galaxies. Galaxy cluster studies can be enhanced by measuring motions of galaxies in and around clusters and by testing photo-z performance in regions of high density. Photometric redshift and intrinsic alignment studies are best-suited to instruments on large-aperture telescopes with wider fields of view (e.g., Subaru/PFS, MSE, or GMT/MANIFEST) but cluster investigations can be pursued with smaller-field instruments (e.g., Gemini/GMOS, Keck/DEIMOS, or TMT/WFOS), so deep MOS work can be distributed amongst a variety of telescopes. However, community access to large amounts of nights for surveys will still be needed to accomplish this work. In two companion white papers we present gains from shallower, wide-area MOS and from single-target imaging and spectroscopy.

4236 more worksshow all