Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Chip-Last HDFO (High-Density Fan-Out) Interposer-PoP

Abstract

Interposer Package-on-Package (PoP) technology was developed and has been in very high-volume production over the last several years for high-end mobile application processors (APs). This is due to its advantages of good package design flexibility, controllable package warpage at room temperature (25°C) and high temperature (260°C), reduced assembly manufacturing cycle time and chip-last assembly manufacturing availability. To date, the laminate-substrate based interposer-PoP has been employed for high-end mobile APs with very high-volume production. Recently, this interposer-PoP design has faced some technical limitations including the need to reduce: top and bottom routing layer thickness, copper (Cu) trace line/space and via size for next generation mobile APs. These reductions may require ultra-thin package z-height and high-bandwidth bottom and top routing layers. To address these challenges, a new interposer-PoP with High-Density Fan-Out (HDFO) redistribution layer (RDL) routing layer has been designed and demonstrated. It is part of an initiative to achieve an ultra-thin package z-height, interposer-PoP structure with high bandwidth and improved signal integrity/power integrity (SI/PI) routing layer using a chip-last assembly manufacturing process flow. This paper will discuss package-level characterizations on the interposer-PoP with HDFO RDL routing layer as well as package z-height evaluation, temperature-dependent package warpage measurements and package-level reliability tests conducted in accordance with JEDEC.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View