- Main
Photoinduced Electron–Nuclear Dynamics of Fullerene and Its Monolayer Networks in Solvated Environments
Abstract
The recently synthesized monolayer fullerene network in a quasi-hexagonal phase (qHP-C60) exhibits superior electron mobility and optoelectronic properties compared to molecular fullerene (C60), making it highly promising for a variety of applications. However, the microscopic carrier dynamics of qHP-C60 remain unclear, particularly in realistic environments, which are of significant importance for applications in optoelectronic devices. Unfortunately, traditional ab initio methods are prohibitive for capturing the real-time carrier dynamics of such large systems due to their high computational cost. In this work, we present the first real-time electron-nuclear dynamics study of qHP-C60 using velocity-gauge density functional tight binding, which enables us to perform several picoseconds of excited-state electron-nuclear dynamics simulations for nanoscale systems with periodic boundary conditions. When applied to C60, qHP-C60, and their solvated counterparts, we demonstrate that water/moisture significantly increases the electron-hole recombination time in C60 but has little impact on qHP-C60. Our excited-state electron-nuclear dynamics calculations show that qHP-C60 is extremely unique and enable exploration of time-resolved dynamics for understanding excited-state processes of large systems in complex, solvated environments.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-