UC Riverside UC Riverside Previously Published Works

Title

Photoinduced Electron–Nuclear Dynamics of Fullerene and Its Monolayer Networks in Solvated Environments

Permalink <https://escholarship.org/uc/item/73f0q811>

Journal Journal of the American Chemical Society, 146(51)

ISSN 0002-7863

Authors

Xu, Qiang Weinberg, Daniel Okyay, Mahmut Sait [et al.](https://escholarship.org/uc/item/73f0q811#author)

Publication Date

2024-12-09

DOI

10.1021/jacs.4c12952

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at<https://creativecommons.org/licenses/by/4.0/>

Peer reviewed

Photoinduced Electron−**Nuclear Dynamics of Fullerene and Its Monolayer Networks in Solvated Environments**

[Qiang](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qiang+Xu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Xu,[*](#page-7-0) Daniel [Weinberg,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+Weinberg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Mahmut](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mahmut+Sait+Okyay"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Sait Okyay, Min [Choi,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Min+Choi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Mauro](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mauro+Del+Ben"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Del Ben, and Bryan M. [Wong](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bryan+M.+Wong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[*](#page-7-0)

ACCESS | [Metrics](https://pubs.acs.org/doi/10.1021/jacs.4c12952?goto=articleMetrics&ref=pdf) & More | Metrics Article [Recommendations](https://pubs.acs.org/doi/10.1021/jacs.4c12952?goto=recommendations&?ref=pdf)

ABSTRACT: The recently synthesized monolayer fullerene network in a quasi-hexagonal phase $(qHP-C_{60})$ exhibits superior electron mobility and optoelectronic properties compared to molecular fullerene (C_{60}) , making it highly promising for a variety of applications. However, the microscopic carrier dynamics of $qHP-C_{60}$ remain unclear, particularly in realistic environments, which are of significant importance for applications in optoelectronic devices. Unfortunately, traditional *ab initio* methods are prohibitive for capturing the real-time carrier dynamics of such large systems due to their high computational cost. In this work, we present the first real-time electron−nuclear dynamics study of $qHP-C_{60}$ using velocity-gauge density functional tight binding, which enables us to perform several picoseconds of excited-state electron−nuclear dynamics simulations for nanoscale systems with periodic boundary conditions. When applied to C_{60} , qHP- C_{60} , and their solvated counterparts, we demonstrate that water/moisture significantly increases the electron-hole recombination time in C_{60} but has little impact on qHP- C_{60} . Our excited-state electron-nuclear dynamics calculations show that $qHP-C_{60}$ is extremely unique and enable exploration of time-resolved dynamics for understanding excited-state processes of large systems in complex, solvated environments.

■ **INTRODUCTION**

The recently synthesized two-dimensional, monolayer fullerene network in a quasi-hexagonal phase (qHP- C_{60}) has attracted significant attention from the scientific community due to its favorable optical bandgap, superior electron mobility, and optoelectronic properties, $\frac{1}{1}$ making it promising for broad applications in microelectronics, photovoltaics, and photo-catalysis.^{[2](#page-7-0)−[6](#page-7-0)} However, the performance of qHP-C₆₀ in realistic environments is still unknown, particularly in the presence of water/moisture, which is typically present during solar cell fabrication and operation. As a closely related example, recent studies on perovskites have shown impressive performance in photovoltaic applications; however, their efficiencies significantly decrease when exposed to humidity, which degrades the material and reduces the performance of the device. $7−9$ $7−9$ $7−9$ Similarly, understanding the excited-state dynamics (i.e., photogenerated electrons and holes) of $qHP-C_{60}$ under realistic solvated/moisture environments is essential for realizing its potential technological applications.

Time-resolved measurements can enable unique insights into the intrinsic quantum dynamics of these chemical/material systems due to their ability to probe phenomena at the $f_{\text{emtosecond}}^{10}$ and attosecond 11 11 11 time scales. In particular, attosecond-resolution experiments, which recently garnered a 2023 Nobel prize, 11 have opened the door to exploring ultrafast excited-state electron(-nuclear) dynamics with exquisite precision.[12](#page-7-0)−[15](#page-7-0) These advanced experimental techniques have enabled the investigation of rich electron−nuclear dynamical

effects, such as photoinduced phase transitions, $16,17$ laserinduced hot-carrier transport dynamics, $18,19$ and waterenhanced time scales in electron−hole recombination pro-cesses.^{20,[21](#page-8-0)} These findings provide insight into the underlying dynamic properties of charge carriers in these materials to guide the design of functional nanodevices.^{[18,22](#page-8-0),[23](#page-8-0)} However, experimental studies can only characterize a small portion of the photoinduced processes, and a deeper understanding of the carrier dynamics and the mechanisms behind these phenomena requires theoretical guidance and verification.^{[24](#page-8-0)}

In this work, we present a new Ehrenfest dynamics method, based on our recently developed velocity-gauge real-time timedependent density functional tight-binding (VG-rtTDDFTB) approach, 25 for simulating excited-state electron–nuclear dynamics in large, complex, periodic condensed matter systems. In addition, we propose and implement an excited-state diagnostic for extracting real-time electron−hole pair distributions during the ensuing electron−nuclear dynamics. Our new approach provides a real-time and direct approach to observing electron−hole generation, transfer, and recombination. Using

Received: September 17, 2024 Revised: November 11, 2024 Accepted: November 25, 2024 Published: December 9, 2024

our new implementation, we perform extremely long, picosecond electron−nuclear dynamics simulations for molecular fullerene (C_{60}) , qHP- C_{60} ,^{[1](#page-7-0)} and their solvated counterparts. These simulations are well beyond the capabilities and scope of traditional adiabatic Born−Oppenheimer molecular dynamics (BOMD) simulations or conventional time-dependent density functional theory (TDDFT), especially for large periodic nanoscale systems and long picosecond time scales. These massive simulations provide essential insight into solventmediated electron−nuclear dynamics and give a wholistic approach for exploring excited-state processes, such as hot carrier transport in nanomaterials,^{[21](#page-8-0)−[23](#page-8-0)} in realistic environments.

■ **THEORETICAL FORMALISM**

To derive the coupled equations of motion for both the electrons and nuclei, we first construct the Lagrangian within the VG-rtTDDFTB formalism (setting $\hbar = e = m_e = 1$):

$$
\mathcal{L} = \sum_{I} \frac{1}{2} M_{I} \dot{\mathbf{R}}_{I}^{2} + \frac{1}{c} \sum_{I} Z_{I} \dot{\mathbf{R}}_{I} \cdot \mathbf{A} +
$$

$$
\sum_{n\mathbf{k}}^{Occ} \langle \psi_{n\mathbf{k}} | i \frac{\partial}{\partial t} - \widehat{H} [\rho_{0}] - \widehat{H}_{ext} | \psi_{n\mathbf{k}} \rangle - E_{2} [\Delta \mathbf{q}]
$$

$$
- E_{rep} (\mathbf{R})
$$
 (1)

where M_{I} , $\dot{\mathbf{R}}_{I}$, and Z_{I} are the mass, velocity, and charge of the *I*th atomic nucleus, respectively. $\mathbf{A}(t) = -c \int_{0}^{t} \mathbf{E}(\tau) d\tau$ is the real-time external vector potential, where *c* and E are the speed of light in vacuum and the external electric field, respectively. *H*̂ [*ρ*0] is the zeroth-order Hamiltonian that depends on the superposition of atomic densities, ρ_0 ; $E_2[\Delta \mathbf{q}] = \frac{1}{2} \sum_{IJ} \gamma_{IJ} \Delta q_I \Delta q_J$ and $E_{\rm rep}(\mathbf{R})$ are the second-order correction energy and repulsive energy, respectively, where γ_{II} is the interaction coefficient that depends on the distance between the *I*th and *J*th atoms. The $\Delta q = {\Delta q_I}$ and $\mathbf{R} = \{ \mathbf{R}_l \}$ terms denote the sets of atomic Mulliken charges and positions, respectively.^{[25](#page-8-0)−[28](#page-8-0)} In the long-wavelength approximation,^{[29](#page-8-0)–[31](#page-8-0)} the external-field Hamiltonian, \hat{H}_{ext} in the velocity gauge is given by 5°

$$
\widehat{H}_{ext}(t) = \frac{1}{c} \mathbf{A}(t) \cdot \widehat{\mathbf{p}} + \frac{1}{2c^2} |\mathbf{A}(t)|^2
$$
\n(2)

where $\mathbf{\hat{p}}$ denotes the momentum operator. In the density functional tight-binding $(DFTB)^{26,27}$ $(DFTB)^{26,27}$ $(DFTB)^{26,27}$ formalism, a nonorthogonal pseudoatomic basis set, $\{|\phi_{\mu}^{\zeta}\rangle\}$, is used to discretize eq 1. The collective index, μ , represents (I, l, m) such that $|\phi_{\mu}^{\zeta}\rangle$ denotes the orbital centered on the *I*th atom of the *ζ*th periodic cell image in real space with (*l*, *m*) angular momentum quantum numbers, where $\phi_{\mu}(\mathbf{r} - \mathbf{R}_{I} - \mathbf{L}_{\zeta}) = \langle \mathbf{r} | \phi_{\mu}^{\zeta} \rangle$; \mathbf{R}_{I} and \mathbf{L}_{ζ} are the positions of the *I*th atom and *ζ*th periodic image, respectively.[25](#page-8-0) Using this atomic basis set, the Bloch state $|\psi_{nk}\rangle$ in eq 1 can be rewritten as

$$
|\psi_{n\mathbf{k}}\rangle = \frac{1}{\sqrt{N_{\mathbf{k}}}} \sum_{\zeta} \sum_{\mu=1}^{N_{\mathbf{b}}} C_{n\mathbf{k}}^{\mu} e^{i\mathbf{k} \cdot \mathbf{I}_{\zeta}} |\phi_{\mu}^{\zeta}\rangle
$$
(3)

where N_b is the number of atomic basis functions in the unit cell. Combining eqs 1 and 3, one can derive the dynamical equations for the electrons and nuclei via the Euler−Lagrange equations^{32,33}:

$$
\mathbf{C}_{n\mathbf{k}} = -i\mathbf{S}_{\mathbf{k}}^{-1}(\mathbf{H}_{\mathbf{k}} - i\mathbf{\Gamma}_{\mathbf{k}})\mathbf{C}_{n\mathbf{k}} \tag{4}
$$

$$
M_{I}\ddot{\mathbf{R}}_{I} = -\sum_{\mathbf{k}} \left[\mathrm{Tr} \left(\mathbf{D}_{\mathbf{k}} \nabla_{I} \mathbf{H}_{\mathbf{k}}^{0} + \nabla_{I} \mathbf{S}_{\mathbf{k}} \sum_{J} \gamma_{J} \Delta q_{J} \right) \right. \\
\left. + \mathrm{Tr} (\mathbf{D}_{\mathbf{k}} \nabla_{I} \mathbf{S}_{\mathbf{k}} \mathbf{S}_{\mathbf{k}}^{-1} \mathbf{H}_{\mathbf{k}}^{\text{ext}} + \text{h. c.}) \right] \\
-\frac{1}{c} Z_{I} \dot{\mathbf{A}} - \Delta q_{I} \sum_{J} \nabla_{I} \gamma_{J} \Delta q_{J} - \nabla_{I} E_{\text{rep}}(\mathbf{R}) \\
-\sum_{k} \mathrm{Tr} (\mathbf{D}_{\mathbf{k}} \nabla_{I} \mathbf{S}_{\mathbf{k}} \mathbf{S}_{\mathbf{k}}^{-1} \mathbf{H}_{\mathbf{k}} + \text{h. c.}) \\
-i \sum_{\mathbf{k}} \left[\mathrm{Tr} (\mathbf{D}_{\mathbf{k}} \nabla_{I} \mathbf{S}_{\mathbf{k}} \mathbf{S}_{\mathbf{k}}^{-1} \mathbf{\Gamma}_{\mathbf{k}} + \text{h. c.}) \right. \\
\left. - \mathrm{Tr} (\mathbf{D}_{\mathbf{k}} \mathbf{\Theta}_{I,\mathbf{k}} + \text{h. c.}) \right] \tag{5}
$$

where $C_{nk} = \left[C_{nk}^1, C_{nk}^2, \cdots\right]^T$ in eq 4 is the coefficient vector of the *n*kth state; $\mathbf{D_k} = \frac{1}{N_k} \sum_{n}^{\text{occ.}} \mathbf{C}_{n\mathbf{k}} \mathbf{C}_{n\mathbf{k}}^\dagger$ $=\frac{1}{N_{\rm k}}\sum_n^{\rm occ.}\mathbf{C}_{n\mathbf{k}}\mathbf{C}_{n\mathbf{k}}^\dagger$, $\mathbf{S}_{\mathbf{k}\prime}$ $\mathbf{H}_{\mathbf{k}}^0$, $\mathbf{H}_{\mathbf{k}}^{\rm ext}$, and $\mathbf{H}_{\mathbf{k}}$ denote the k-dependent density, overlap, zero-order Hamiltonian, external Hamiltonian, and total Hamiltonian matrices, respectively.[25](#page-8-0) The "h.c." abbreviation denotes the Hermitian conjugate of the terms in the parentheses. Γ_k and $\Theta_{l,k}$ are the nonadiabatic coupling matrices, whose elements are given by

$$
\Gamma_{\mathbf{k}}^{\mu\nu} = \sum_{\zeta} e^{-i\mathbf{k}\cdot\mathbf{L}_{\zeta}} \langle \phi_{\mu}^{\zeta} | \dot{\phi}_{\nu}^{0} \rangle \equiv \sum_{\zeta} e^{-i\mathbf{k}\cdot\mathbf{L}_{\zeta}} \overline{\Gamma}^{\mu\nu}(\mathbf{L}_{\zeta})
$$
(6)

$$
\Theta_{I,\mathbf{k}}^{\mu\nu} = \sum_{\zeta} e^{-i\mathbf{k}\cdot\mathbf{L}_{\zeta}} \langle \nabla_{I} \phi_{\mu}^{\zeta} | \dot{\phi}_{\nu}^0 \rangle \equiv \sum_{\zeta} e^{-i\mathbf{k}\cdot\mathbf{L}_{\zeta}} \overline{\Theta}_{I}^{\mu\nu}(\mathbf{L}_{\zeta}) \tag{7}
$$

Note that the last line in eq 5 depends on the velocity of the nuclei, $\ket{\dot{\phi}_{v}^{0}}=\ket{\nabla_{\!f} \phi_{v}^{0}}\cdot\dot{\mathbf{R}}_{J}$, and contributes to the nonadiabatic coupling forces. The velocity-dependent forces are ignored in our implementation for the small nuclear velocities in the systems explored in our work. 28 Alternatively, the equation of motion in eq 4 can also be rewritten using the density matrix:

$$
\mathbf{D}_{\mathbf{k}} = -i\mathbf{S}_{\mathbf{k}}^{-1}(\mathbf{H}_{\mathbf{k}} - i\mathbf{\Gamma}_{\mathbf{k}})\mathbf{D}_{\mathbf{k}} + \text{h. c.}
$$
\n(8)

Given initial conditions $D_k(0)$, $R(0)$, and $\dot{R}(0)$, one can simulate the real-time motion of both nuclei and electrons via eqs 5 and 8, respectively, where the time-dependent density matrix and nuclear coordinates are updated by the leapfrog²⁵ and Verlet^{[34](#page-8-0)} integral algorithms, respectively. The leapfrog method for propagating the electronic density matrix is computationally efficient for large matrices due to its fewer matrix multiplications, whereas the Verlet method is commonly applied to nuclear dynamics to ensure numerical stability and time-reversibility.

■ **RESULTS AND DISCUSSION**

Computational Details. We used fixed cell dimensions of 17.0 Å \times 17.0 Å \times 17.0 Å for both the isolated C₆₀ and watersolvated fullerene $(C_{60} - H_2O)$ systems. To capture a realistic solvated environment, we used a 1 $g/cm³$ water-molecular density for the C_{60} -H₂O system, which resulted in a large system size of 450 atoms. We used an 18.4 Å \times 15.9 Å \times 17.0 Å box for the 2 \times [1](#page-7-0) \times 1 supercell of qHP-C₆₀, 1,35 1,35 1,35 as well as its solvated form (qHP-C $_{60}$ -H₂O), which contains 426 atoms. All DFTB-based calculations, including ground-state calculations, geometry optimizations, BOMD simulations, electron dynamics, and Ehrenfest dynamics, used the *mio*-1−1 Slater-Koster parameter

Figure 1. Flowchart of real-time Ehrenfest VG-rtTDDFTB with an excited-state diagnostic algorithm for extracting real-time electron−hole pair distributions.

Figure 2. Geometries of (a) fullerene (C₆₀) and (b) quasi-hexagonal phase monolayer polymeric fullerene (qHP-C₆₀); the brown and blue spheres represent *sp*² and *sp*³ -hybridized carbon atoms, respectively. (c) Imaginary part of the dielectric function, *ϵxx*, and (d) DOS calculated with DFTB. The *g* and *u* subscripts in the DOS plot for C₆₀ denote orbitals with gerade and ungerade symmetry, respectively. The *V* and *C* labels in the DOS plot for qHP-C₆₀ denote valence- and conduction-band states at -1.0 and 0.7 eV, respectively.

set²⁶ with a single Γ point. A 0.5 and a 0.001 fs time step was used for our BOMD and electron/Ehrenfest dynamics, respectively. To obtain the time-dependent currents and absorption spectra,^{[25](#page-8-0)} we applied a δ -function electric field kick along the *x*-axis ($E_x(t) = E_0 \delta(t)$ and $E_0 = 0.005 \text{ eV/A}$) for 50 fs (50,000 steps) on the optimized structures. Before starting the excited-state Ehrenfest dynamics simulations, we conducted an initial 10 ps (20,000 steps) of NVT-ensemble BOMD simulations, controlled by a Nosé-Hoover thermostat $36,37$ $36,37$ at 300 K, to equilibrate all of the systems. We then performed excited-state Ehrenfest dynamics simulations, as shown in Figure 1. The initial conditions, $R(0)$ and $\dot{R}(0)$, for the Ehrenfest dynamics were obtained from the atomic positions and velocities of the last BOMD step, respectively. For the

Figure 3. Time-resolved FDOS of (a) C_{60} and (b) qHP- C_{60} calculated by excited-state Ehrenfest dynamics at 300 K from 50 to 100 fs.

excited-state Ehrenfest dynamics, we applied a sin²-envelope laser pulse (centered at 75 fs) from 50 to 100 fs with an intensity of 10^{11} W/cm² ($E_0 \approx 0.0868$ eV/Å) along the *x*-axis for all systems. It is worth mentioning that our approach can also be initiated in an excited state rather than using an applied electric field, as indicated in the second box on the left side of our flowchart in [Figure](#page-3-0) 1. Over 5 ps (>5,000,000 steps) of Ehrenfest dynamics were performed to capture the long-timescale excited electron−hole generation, transfer, and recombination processes.

In the remainder of this work, we simplify our notation for the index of states ($n\mathbf{k} \rightarrow i$) and omit the **k** index in the Hamiltonian and density matrices in [Figure](#page-3-0) 1. To obtain dynamical information on the electronic-excited states, we also carried out a ground-state calculation at every 5,000 steps of the Ehrenfest dynamics trajectory with an external excited-state diagnostic code, as shown in the blue box of [Figure](#page-3-0) 1, where $\epsilon_i^0(t)$, $\psi_i^0(t)$, and $f_i^0(t)$ are the *i*th eigenvalue, eigenstate, and occupation number for the ground-state Hamiltonian at time *t*, respectively. The electronic populations with respect to the ground-state occupations were calculated with the expression:

$$
\Delta f_i(t) \equiv \langle \psi_i^0(t) | \widehat{\mathbf{D}}(t) | \psi_i^0(t) \rangle - f_i^0(t) \tag{9}
$$

where $\hat{\mathbf{D}}(t)$ is the real-time density matrix operator. Using $\{\Delta f_i(t)\}\text{, we can monitor the number of excited electrons } (N_e)$ and holes (*N*h) in real time with the expression $N_{h}(t) = N_{e}(t) = \frac{1}{2} \sum_{i=1}^{N_{b}} |\Delta f_{i}(t)|$. It is worth noting that this definition of N_h (or N_e) includes the contribution of intermediate states during the electron−hole generation/ recombination process, which goes beyond traditional single-
particle-state population analyses^{[38](#page-8-0)−[41](#page-8-0)} and theoretical models[.42](#page-8-0)[−][46](#page-8-0) To analyze the distribution of excited electrons and holes as a function of energy and time, we define a *time-resolved* Δ*f*-factored density of states (FDOS) given by

$$
\text{FDOS}(E; t) \equiv \sum_{i=1}^{N_b} \Delta f_i(t) \delta[E - \epsilon_i^0(t)] \tag{10}
$$

The density of states (DOS) and FDOS in this work were calculated with a Gaussian function with a width of 0.05 eV, and the Fermi level (E_f) in the DOS/FDOS was shifted to a 0 eV reference energy. To allow a direct comparison with C_{60} , the DOS, FDOS, N_{h} , and net charge transfer (ΔQ) for qHP-C₆₀ were averaged over each C_{60} unit. The charge density^{[25](#page-8-0)} in this work was defined as $\rho(\mathbf{r}, t) \equiv \sum_{I} \frac{Q_{I}(t)}{\sqrt{(2\pi)^{3}+s^{2}}} e^{-(\mathbf{r}-\mathbf{R})t}$ (2π) $\frac{I_{I}(t)}{I_{I}(\sqrt{3})}e^{-(\mathbf{r}-\mathbf{R}_{I})^{2}/2}$ $2^{2}/2\eta^{2}$, where

 $Q_I(t) = Z_I - q_I(t)$ denotes the net charge on the *I*th atom, and *η* is set to 0.5 Å.

Results. Before performing excited-state Ehrenfest dynamics calculations, we first calculated the optical spectra of C_{60} [\(Figure](#page-3-0) [2](#page-3-0)a) and monolayer polymeric fullerene, qHP- C_{60} [\(Figure](#page-3-0) 2b). As shown in [Figure](#page-3-0) 2c, the absorption peaks of C_{60} calculated by our VG-rtTDDFTB approach are close to those obtained via linear-response $TDDFT.⁴⁷$ $TDDFT.⁴⁷$ $TDDFT.⁴⁷$ In addition, the low-energy absorption peaks at 1.02 and 1.65 eV for qHP- C_{60} are close to those obtained with TDDFT with the HSE06 functional.^{[48](#page-8-0)} Interestingly, we observed that the spectral onset appears at significantly different energies for the first main peaks in qHP- C_{60} (1.65 eV) and C_{60} (3.30 eV). To explore the origin of this difference, [Figure](#page-3-0) 2d plots the DOS of C_{60} and qHP- C_{60} . The electronic excitations of C_{60} with sp^2 -hybridized atoms obey the selection rule of allowed transitions only between gerade and ungerade states. As such, the C_{60} absorption peak at 3.30 eV is due to $g_g + h_g \rightarrow t_{1u}$ and $h_u \rightarrow t_{1g}$ electronic transitions due to the comparable energy-level differences between the states. On the other hand, the structure and orbital symmetry of $qHP-C_{60}$ are significantly altered by the formation of sp^3 -hybridized atoms.^{[35](#page-8-0)} The $V \rightarrow C$ electronic excitation is likely allowed for qHP-C₆₀, resulting in the first main absorption peak at 1.65 eV.

To provide further insight into these results, Figure 3 plots the FDOS for both C_{60} and qHP- C_{60} , which we obtained from excited-state Ehrenfest dynamics calculations using sin²envelope laser pulses with frequencies of 3.30 and 1.65 eV for C_{60} and qHP- C_{60} , respectively. In the FDOS plots, we observed two main peaks corresponding to holes at the $g_g + h_g$ and h_u states below the Fermi level, whereas excited electrons appear at $t_{1\omega}$, $t_{1\varrho}$, and $h_{g} + t_{2u} + h_{u}$ states above the Fermi level. The excited electrons in the higher-energy states $(h_g + t_{2u} + h_u)$ can be attributed to second-order electronic transitions among the $t_{1\omega}$ t_{1g} , and $h_g + t_{2u} + h_u$ states. The FDOS of qHP-C₆₀ in Figure 3b clearly demonstrates the transfer of electrons from the *V* states to the *C* states, in which both of these states have orbital contributions due to sp²-hybridized atoms, as shown in [Figure](#page-3-0) [2](#page-3-0)d. Therefore, the absorption peak of $qHP-C_{60}$ at 1.65 eV is mainly caused by local bonding distortions among *sp*² hybridized atoms rather than the formation of *sp*³ -hybridized atoms.

As discussed in the Introduction, water/moisture can have a dramatic effect on electron−nuclear dynamics in complex material systems and can significantly alter electron emission,^{[49](#page-8-0)} electron–hole recombination,^{[20,21,46](#page-8-0)} and charge transfer.^{[24,50](#page-8-0)} While experiments have shown that water significantly affects electron−hole recombination processes, a systematic, timeresolved analysis of these dynamic processes is less common due to the complexity of the excited-state dynamics in these large, disordered systems. To shed mechanistic insight into these processes, we carried out BOMD simulations of C_{60} -H₂O and qHP-C₆₀-H₂O (Figure 4a,b) shows structures from the last step of these BOMD simulations) followed by over 5 ps of excitedstate Ehrenfest dynamics to calculate electron−hole dynamics.

Figure 4. Structures of (a) C_{60} -H₂O and (b) qHP-C₆₀-H₂O obtained from the last step of 10 ps NVT molecular dynamics simulations.

To probe the underlying mechanisms of the exceptionally long time scales of excited electrons/holes in C_{60} -H₂O and qHP- C_{60} -H₂O, Figure 5 plots time-resolved charge density differences between the excited $(\rho(\mathbf{r}, t))$ and ground $(\rho_0(\mathbf{r}, t))$ states. During the interaction with the laser pulse between 50 and 100 fs, C_{60} generates a significant number of excited electron–hole pairs, coinciding with the transfer of a few holes to the adjacent water molecules. From 100 to 200 fs, the number of holes transferred to the nearby water molecules gradually increases. At 500 fs, the water molecules capture almost all of the holes in the system. Due to thermal fluctuations in the system, the holes diffuse to areas farther away from C_{60} after 500 fs. We observed similar hole-transfer and diffusion phenomena in qHP- C_{60} -H₂O, as shown in [Figure](#page-6-0) 6. Furthermore, the excited electrons are concentrated on the surface of $qHP-C_{60}$ after 1 ps, revealing more details of charge transfer at the water-matter interface.

To provide a more quantitative analysis of these chargetransfer dynamics, we used our new excited-state diagnostic algorithm to extract real-time electron−hole pair distributions from our Ehrenfest dynamics calculations. [Figure](#page-6-0) 7a depicts the time-resolved number of holes (*Nh*) during this electron−hole combination process, which shows C_{60} -H₂O containing a large number of long-lived excited electrons and holes compared to C_{60} . In qHP- C_{60} -H₂O, as shown in [Figure](#page-6-0) 7b, water also increases the electron−hole recombination lifetime, but the effect is small. The enhanced lifetimes of excited states are consistent with the charge dynamics in Figures 5 and [6](#page-6-0) because the diffusion of water molecules with hole traps decreases the interaction between holes and electrons on $C_{60}/qHP-C_{60}$, which will increase the electron−hole recombination time scales. These findings also indicate that $qHP-C_{60}$ is a promising functional material that can retain its intrinsic electronic properties (as opposed to perovskites, whose performance changes in the presence of moisture) even in complex environments present in realistic electronic devices. To further explore the differences between these two systems, [Figure](#page-6-0) 7c,d plots the real-time charge-transfer dynamics of C_{60} -H₂O and $qHP-C_{60}-H_2O$, respectively. The results clearly show that the number of holes transferred to water by qHP- C_{60} (per C_{60} unit) is only 1/5 of that of C_{60} which confirms that water has a minor impact on the charge-transfer dynamics of the $qHP-C_{60}$ system. This effect is also due to the 2-dimensional thin film of $qHP-C_{60}$ having a smaller specific surface area at the water-matter interface compared to the 0-dimensional C_{60} , which significantly reduces hole transfer and the formation of hole traps on the surrounding water molecules. As shown in [Figure](#page-6-0) 6, only the outermost carbon atoms in the qHP- C_{60} -water interface can

Figure 5. Snapshots of laser-induced charge density fluctuations $\Delta \rho(\mathbf{r}, t) \equiv \rho(\mathbf{r}, t) - \rho_0(\mathbf{r}, t)$, where $\rho_0(\mathbf{r}, t)$ is the ground-state charge density, for C₆₀ in a periodic box of water calculated with VG-rtTDDFTB-based Ehrenfest dynamics. The simulations were carried out at 300 K for 5 ps.

Figure 6. Snapshots of laser-induced charge density fluctuations $\Delta \rho(\mathbf{r}, t) \equiv \rho(\mathbf{r}, t) - \rho_0(\mathbf{r}, t)$, where $\rho_0(\mathbf{r}, t)$ is the ground-state charge density, for $qHP-C_{60}$ in a periodic box of water calculated with VG-rtTDDFTB-based Ehrenfest dynamics. The simulations were carried out at 300 K for 5 ps.

Figure 7. Time-resolved number of holes in (a) C_{60} , C_{60} -H₂O, and (b) qHP-C₆₀, qHP-C₆₀-H₂O. Real-time net charge transfer, $\Delta Q(t) = Q(t) - Q(0)$, in (c) C_{60} -H₂O and (d) qHP-C₆₀-H₂O calculated from Ehrenfest VG-rtTDDFTB dynamics.

interact with water molecules and accept electrons; however, the internal and sp^3 -hybridized carbon atoms of $qHP\text{-}C_{60}$ are inactive for hole transfer, as shown by the yellow-colored hole densities located inside qHP- C_{60} after 500 fs. In contrast, all of the carbon atoms in C_{60} interact with the surrounding water molecules (and their electrons) as shown in [Figure](#page-5-0) 5 after 500 fs.

Overall, our excited-state electron−nuclear simulations provide mechanistic details of these hole-trap processes and an intuitive physical picture for understanding excited-state lifetimes and solvent-mediated electron−nuclear dynamics in large, complex systems.

In summary, we have developed and applied a new Ehrenfest VG-rtTDDFTB approach for probing laser-induced excitedstate electron−nuclear dynamics of large systems with picosecond-long time scales. This new capability enables a holistic approach for capturing time-resolved, excited-state electron− nuclear dynamics, including excited electron−hole generation/ transfer and nonradiative recombination processes in a variety of condensed phase systems. As representative examples of our approach, we calculated absorption spectra and time-resolved electron transitions for both C_{60} and qHP- C_{60} . We found that local bonding distortion plays a significant role in the different low-energy-excitation dynamics observed in C_{60} and qHP- C_{60} . Moreover, we carried out over 5 ps of electron−nuclear dynamics simulations (more than 5,000,000 steps) for solvated systems of C_{60} and qHP- C_{60} , containing 450 and 426 atoms, respectively. We observed that water significantly increases the electron–hole recombination time scales in C_{60} but has little impact on $qHP-C_{60}$ due to the generation and diffusion of hole traps in the individual water molecules. These large-scale/longtime-scale simulations allow us to rationalize the absorption spectra and electron transitions in these systems to offer mechanistic insight into solvent-mediated electron−nuclear dynamics in condensed-phase systems. Finally, our approach provides a comprehensive paradigm for exploring time-resolved electron−nuclear dynamics to understand excited-state dynamics of large chemical/material systems in realistic environments.

■ **AUTHOR INFORMATION**

Corresponding Authors

Qiang Xu − *Department of Chemistry, Department of Physics and Astronomy, and Materials Science and Engineering Program, University of California-Riverside, Riverside, California 92521, United States;* [orcid.org/0000-0003-](https://orcid.org/0000-0003-3747-4325) [3747-4325](https://orcid.org/0000-0003-3747-4325); Email: qiangx@ucr.edu

Bryan M. Wong − *Department of Chemistry, Department of Physics and Astronomy, and Materials Science and Engineering Program, University of California-Riverside, Riverside, California 92521, United States;* [orcid.org/0000-0002-](https://orcid.org/0000-0002-3477-8043) [3477-8043](https://orcid.org/0000-0002-3477-8043); Email: bryan.wong@ucr.edu

Authors

Daniel Weinberg − *Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;* [orcid.org/0000-](https://orcid.org/0000-0001-7552-4712) [0001-7552-4712](https://orcid.org/0000-0001-7552-4712)

Mahmut Sait Okyay − *Department of Chemistry, Department of Physics and Astronomy, and Materials Science and Engineering Program, University of California-Riverside, Riverside, California 92521, United States*

Min Choi − *Department of Chemistry, Department of Physics and Astronomy, and Materials Science and Engineering Program, University of California-Riverside, Riverside, California 92521, United States*

Mauro Del Ben − *Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States*

Complete contact information is available at: [https://pubs.acs.org/10.1021/jacs.4c12952](https://pubs.acs.org/doi/10.1021/jacs.4c12952?ref=pdf)

Notes

The authors declare no competing financial interest.

■ **ACKNOWLEDGMENTS**

This work was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through the Advanced Computing (SciDAC) program under Award Number DE-SC0022209. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231 using NERSC award BES-ERCAP0023692.

■ **REFERENCES**

(1) Hou, L.; Cui, X.; Guan, B.; Wang, S.; Li, R.; Liu, Y.; Zhu, D.; Zheng, J. Synthesis of a [Monolayer](https://doi.org/10.1038/s41586-022-04771-5) Fullerene Network. *Nature* 2022, *606*, 507−510.

(2) Avouris, P.; Chen, Z.; Perebeinos, V. [Carbon-Based](https://doi.org/10.1038/nnano.2007.300) Electronics. *Nature Nanotechnol.* 2007, *2*, 605−615.

(3) Zhu, H.; Wei, J.; Wang, K.; Wu, D. [Applications](https://doi.org/10.1016/j.solmat.2009.04.006) of Carbon Materials in [Photovoltaic](https://doi.org/10.1016/j.solmat.2009.04.006) Solar Cells. *Sol. Energy Mater. Sol. Cells* 2009, *93*, 1461−1470.

(4) Sahani, S.; Tripathi, K. M.; Lee, T. I.; Dubal, D. P.; Wong, C.-P.; Sharma, Y. C.; Kim, T. Y. Recent Advances in [Photocatalytic](https://doi.org/10.1016/j.enconman.2021.115133) Carbon-Based Materials for Enhanced Water Splitting under [Visible-Light](https://doi.org/10.1016/j.enconman.2021.115133) [Irradiation.](https://doi.org/10.1016/j.enconman.2021.115133) *Energy Convers. Manag.* 2022, *252*, No. 115133.

(5) Bramhaiah, K.; Bhattacharyya, S. [Challenges](https://doi.org/10.1039/D1MA00748C) and Future Prospects of [Graphene-Based](https://doi.org/10.1039/D1MA00748C) Hybrids for Solar Fuel Generation: Moving Towards Next Generation [Photocatalysts.](https://doi.org/10.1039/D1MA00748C) *Mater. Adv.* 2022, *3*, 142− 172.

(6) Capobianco, A.; Wiktor, J.; Landi, A.; Ambrosio, F.; Peluso, A. Electron [Localization](https://doi.org/10.1021/acs.nanolett.4c01695?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Mobility in Monolayer Fullerene Networks. *Nano Lett.* 2024, *24*, 8335−8342.

(7) Hidalgo, J.; Kaiser, W.; An, Y.; Li, R.; Oh, Z.; Castro-Méndez, A.- F.; LaFollette, D. K.; Kim, S.; Lai, B.; Breternitz, J.; Schorr, S.; Perini, C. A. R.; Mosconi, E.; De Angelis, F.; Correa-Baena, J.-P. [Synergistic](https://doi.org/10.1021/jacs.3c05657?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Role of Water and Oxygen Leads to Degradation in [Formamidinium-Based](https://doi.org/10.1021/jacs.3c05657?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Halide [Perovskites.](https://doi.org/10.1021/jacs.3c05657?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2023, *145*, 24549−24557.

(8) Ho, K.; Wei, M.; Sargent, E. H.; Walker, G. C. [Grain](https://doi.org/10.1021/acsenergylett.0c02247?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Transformation and Degradation Mechanism of [Formamidinium](https://doi.org/10.1021/acsenergylett.0c02247?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Cesium Lead Iodide [Perovskite](https://doi.org/10.1021/acsenergylett.0c02247?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) under Humidity and Light. *ACS Energy Lett.* 2021, *6*, 934−940.

(9) Kaiser, W.; Ricciarelli, D.; Mosconi, E.; Alothman, A. A.; Ambrosio, F.; De Angelis, F. Stability of Tin- versus [Lead-Halide](https://doi.org/10.1021/acs.jpclett.2c00273?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [Perovskites:](https://doi.org/10.1021/acs.jpclett.2c00273?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Ab Initio Molecular Dynamics Simulations of Perovskite/ Water [Interfaces.](https://doi.org/10.1021/acs.jpclett.2c00273?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Phys. Chem. Lett.* 2022, *13*, 2321−2329.

(10) Zewail, A. H. [Femtochemistry:](https://doi.org/10.1002/1521-3773(20000804)39:15<2586::AID-ANIE2586>3.0.CO;2-O) Atomic-Scale Dynamics of the [Chemical](https://doi.org/10.1002/1521-3773(20000804)39:15<2586::AID-ANIE2586>3.0.CO;2-O) Bond Using Ultrafast Lasers (Nobel Lecture). *Angew. Chem., Int. Ed.* 2000, *39*, 2586−2631.

(11) Leone, S. R. Profile of Pierre Agostini, Anne [L'Huillier,](https://doi.org/10.1073/pnas.2321587121) and Ferenc Krausz: 2023 Nobel [Laureates](https://doi.org/10.1073/pnas.2321587121) in Physics. *Proc. Natl. Acad. Sci. U. S. A.* 2024, *121*, No. e2321587121.

(12) Leone, S. R.; McCurdy, C. W.; Burgdörfer, J.; Cederbaum, L. S.; Chang, Z.; Dudovich, N.; Feist, J.; Greene, C. H.; Ivanov, M.; Kienberger, R.; et al. What Will It Take to Observe [Processes](https://doi.org/10.1038/nphoton.2014.48) in 'real [time'?](https://doi.org/10.1038/nphoton.2014.48) *Nat. Photon.* 2014, *8*, 162−166.

(13) Cavalieri, A. L.; Müller, N.; Uphues, T.; Yakovlev, V. S.; Baltuska, ̌ A.; Horvath, B.; Schmidt, B.; Blümel, L.; Holzwarth, R.; Hendel, S.; et al. Attosecond [Spectroscopy](https://doi.org/10.1038/nature06229) in Condensed Matter. *Nature* 2007, *449*, 1029−1032.

(14) Goulielmakis, E.; Loh, Z.-H.; Wirth, A.; Santra, R.; Rohringer, N.; Yakovlev, V. S.; Zherebtsov, S.; Pfeifer, T.; Azzeer, A. M.; Kling, M. F.; et al. Real-Time [Observation](https://doi.org/10.1038/nature09212) of Valence Electron Motion. *Nature* 2010, *466*, 739−743.

(15) Kraus, P. M.; Zürch, M.; Cushing, S. K.; Neumark, D. M.; Leone, S. R. The Ultrafast X-Ray [Spectroscopic](https://doi.org/10.1038/s41570-018-0008-8) Revolution in Chemical [Dynamics.](https://doi.org/10.1038/s41570-018-0008-8) *Nat. Rev. Chem.* 2018, *2*, 82−94.

(16) Yen, R.; Liu, J.; Kurz, H.; Bloembergen, N. [Space-Time](https://doi.org/10.1007/BF00616666) Resolved Reflectivity [Measurements](https://doi.org/10.1007/BF00616666) of Picosecond Laser-Pulse Induced Phase [Transitions](https://doi.org/10.1007/BF00616666) in (111) Silicon Surface Layers. *Appl. Phys. A: Mater. Sci. Process.* 1982, *27*, 153−160.

(17) Hervé, M.; Privault, G.; Trzop, E.; Akagi, S.; Watier, Y.; Zerdane, S.; Chaban, I.; Torres Ramírez, R. G.; Mariette, C.; Volte, A.; et al. Ultrafast and Persistent [Photoinduced](https://doi.org/10.1038/s41467-023-44440-3) Phase Transition at Room [Temperature](https://doi.org/10.1038/s41467-023-44440-3) Monitored by Streaming Powder Diffraction. *Nat. Commun.* 2024, *15*, 267.

(18) Tagliabue, G.; DuChene, J. S.; Abdellah, M.; Habib, A.; Gosztola, D. J.; Hattori, Y.; Cheng, W.-H.; Zheng, K.; Canton, S. E.; Sundararaman, R.; et al. Ultrafast [Hot-Hole](https://doi.org/10.1038/s41563-020-0737-1) Injection Modifies Hot-Electron Dynamics in Au/p-GaN [Heterostructures.](https://doi.org/10.1038/s41563-020-0737-1) *Nat. Mater.* 2020, *19*, 1312−1318.

(19) Taghinejad, M.; Xia, C.; Hrton, M.; Lee, K.-T.; Kim, A. S.; Li, Q.; Guzelturk, B.; Kalousek, R.; Xu, F.; Cai, W.; et al. [Determining](https://doi.org/10.1126/science.adj5612) Hot-Carrier [Transport](https://doi.org/10.1126/science.adj5612) Dynamics from Terahertz Emission. *Science* 2023, *382*, 299−305.

(20) Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. [Understanding](https://doi.org/10.1021/cr5001892?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) $TiO₂$ Photocatalysis: [Mechanisms](https://doi.org/10.1021/cr5001892?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Materials. *Chem. Rev.* 2014, *114*, 9919−9986.

(21) Neelakanni Mudiyanselage, S.; Donnellan, Z.; Hoffmann, L.; Ghosh, S.; Qian, J.; Jamnuch, S.; Pascal, T.; Roth, F.; Eberhardt, W.; Gessner, O. Photo-Induced Plasmonic Light Harvesting Dynamics and Chemical Transformations Monitored Via Picosecond Time-Resolved Ambient-Pressure X-ray Photoelectron Spectroscopy (TRAPXPS). In *APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts*, 2023; pp. M06-007.

(22) Dhama, R.; Habib, M.; Rashed, A. R.; Caglayan, H. [Unveiling](https://doi.org/10.1021/acs.nanolett.2c03922?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Long-Lived Hot-Electron Dynamics via Hyperbolic [Meta-Antennas.](https://doi.org/10.1021/acs.nanolett.2c03922?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Nano Lett.* 2023, *23*, 3122−3127.

(23) Yannai, M.; Dahan, R.; Gorlach, A.; Adiv, Y.; Wang, K.; Madan, I.; Gargiulo, S.; Barantani, F.; Dias, E. J.; Vanacore, G. M.; et al. [Ultrafast](https://doi.org/10.1021/acsnano.2c10481?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Electron [Microscopy](https://doi.org/10.1021/acsnano.2c10481?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Nanoscale Charge Dynamics in Semi[conductors.](https://doi.org/10.1021/acsnano.2c10481?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *ACS Nano* 2023, *17*, 3645−3656.

(24) You, P.; Chen, D.; Liu, X.; Zhang, C.; Selloni, A.; Meng, S. Correlated Electron−Nuclear Dynamics of [Photoinduced](https://doi.org/10.1038/s41563-024-01900-5) Water [Dissociation](https://doi.org/10.1038/s41563-024-01900-5) on Rutile TiO2. *Nat. Mater.* 2024, *23*, 1100−1106.

(25) Xu, Q.; Del Ben, M.; Sait Okyay, M.; Choi, M.; Ibrahim, K. Z.; Wong, B. M. Velocity-Gauge Real-Time [Time-Dependent](https://doi.org/10.1021/acs.jctc.3c00689?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Density Functional [Tight-Binding](https://doi.org/10.1021/acs.jctc.3c00689?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) for Large-Scale Condensed Matter Systems. *J. Chem. Theory Comput.* 2023, *19*, 7989−7997.

(26) Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. [Self-Consistent-Charge](https://doi.org/10.1103/PhysRevB.58.7260) Density-Functional [Tight-Binding](https://doi.org/10.1103/PhysRevB.58.7260) Method for Simulations of Complex Materials [Properties.](https://doi.org/10.1103/PhysRevB.58.7260) *Phys. Rev. B* 1998, *58*, 7260.

(27) Hourahine, B.; Aradi, B.; Blum, V.; Bonafé, F.; Buccheri, A.; Camacho, C.; Cevallos, C.; Deshaye, M.; Dumitrică, T.; Dominguez, A.; et al. DFTB+, a Software Package for Efficient [Approximate](https://doi.org/10.1063/1.5143190) Density Functional Theory Based Atomistic [Simulations.](https://doi.org/10.1063/1.5143190) *J. Chem. Phys.* 2020, *152*, 124101.

(28) Bonafé, F. P.; Aradi, B.; Hourahine, B.; Medrano, C. R.; Hernández, F. J.; Frauenheim, T.; Sánchez, C. G. A [Real-Time](https://doi.org/10.1021/acs.jctc.9b01217?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Time-Dependent Density Functional Tight-Binding [Implementation](https://doi.org/10.1021/acs.jctc.9b01217?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) for [Semiclassical](https://doi.org/10.1021/acs.jctc.9b01217?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Excited State Electron−Nuclear Dynamics and Pump− Probe [Spectroscopy](https://doi.org/10.1021/acs.jctc.9b01217?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Simulations. *J. Chem. Theory Comput.* 2020, *16*, 4454−4469.

(29) Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; Sato, S. A.; Rehr, J. J.; Yabana, K.; Prendergast, D. [Velocity-Gauge](https://doi.org/10.1016/j.cpc.2018.01.013) Real-Time TDDFT within a [Numerical](https://doi.org/10.1016/j.cpc.2018.01.013) Atomic Orbital Basis Set. *Comput. Phys. Commun.* 2018, *226*, 30−38.

(30) Mattiat, J.; Luber, S. [Comparison](https://doi.org/10.1021/acs.jctc.2c00644?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Length, Velocity, and Symmetric Gauges for the [Calculation](https://doi.org/10.1021/acs.jctc.2c00644?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Absorption and Electric Circular Dichroism Spectra with Real-Time [Time-Dependent](https://doi.org/10.1021/acs.jctc.2c00644?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Density [Functional](https://doi.org/10.1021/acs.jctc.2c00644?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Theory. *J. Chem. Theory Comput.* 2022, *18*, 5513−5526.

(31) Ding, F.; Liang, W.; Chapman, C. T.; Isborn, C. M.; Li, X. [On](https://doi.org/10.1063/1.3655675) the Gauge Invariance of [Nonperturbative](https://doi.org/10.1063/1.3655675) Electronic Dynamics Using the [Time-Dependent](https://doi.org/10.1063/1.3655675) Hartree-Fock and Time-Dependent Kohn-Sham. *J. Chem. Phys.* 2011, *135*, 164101.

(33) Niehaus, T. A.; Heringer, D.; Torralva, B.; Frauenheim, T. Importance of Electronic [Self-Consistency](https://doi.org/10.1140/epjd/e2005-00079-7) in the TDDFT Based Treatment of [Nonadiabatic](https://doi.org/10.1140/epjd/e2005-00079-7) Molecular Dynamics. *Eur. Phys. J. D.* 2005, *35*, 467−477.

(34) Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. [A](https://doi.org/10.1063/1.442716) Computer Simulation Method for the Calculation of [Equilibrium](https://doi.org/10.1063/1.442716) Constants for the Formation of Physical Clusters of [Molecules:](https://doi.org/10.1063/1.442716) [Application](https://doi.org/10.1063/1.442716) to Small Water Clusters. *J. Chem. Phys.* 1982, *76*, 637−649.

(35) Tromer, R. M.; Junior, L. A. R.; Galvão, D. S. A DFT [Study](https://doi.org/10.1016/j.cplett.2022.139925) of the Electronic, Optical, and [Mechanical](https://doi.org/10.1016/j.cplett.2022.139925) Properties of a Recently [Synthesized](https://doi.org/10.1016/j.cplett.2022.139925) Monolayer Fullerene Network. *Chem. Phys. Lett.* 2022, *804*, No. 139925.

(36) Nosé, S. A Unified Formulation of the Constant [Temperature](https://doi.org/10.1063/1.447334) [Molecular](https://doi.org/10.1063/1.447334) Dynamics Methods. *J. Chem. Phys.* 1984, *81*, 511−519.

(37) Hoover, W. G. Canonical dynamics: Equilibrium [Phase-Space](https://doi.org/10.1103/PhysRevA.31.1695) [Distributions.](https://doi.org/10.1103/PhysRevA.31.1695) *Phys. Rev. A* 1985, *31*, 1695.

(38) Li, W.; Sun, Y.-Y.; Li, L.; Zhou, Z.; Tang, J.; Prezhdo, O. V. Control of Charge [Recombination](https://doi.org/10.1021/jacs.8b08448?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) in Perovskites by Oxidation State of Halide [Vacancy.](https://doi.org/10.1021/jacs.8b08448?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2018, *140*, 15753−15763.

(39) He, J.; Fang, W.-H.; Long, R. [Unravelling](https://doi.org/10.1039/C9SC02353D) the Effects of Oxidation State of Interstitial Iodine and Oxygen [Passivation](https://doi.org/10.1039/C9SC02353D) on Charge Trapping and [Recombination](https://doi.org/10.1039/C9SC02353D) in CH₃NH₃PbI₃ perovskite: a Time-Domain Ab Initio [Study.](https://doi.org/10.1039/C9SC02353D) *Chem. Sci.* 2019, *10*, 10079−10088.

(40) Kim, T. W.; Jun, S.; Ha, Y.; Yadav, R. K.; Kumar, A.; Yoo, C.-Y.; Oh, I.; Lim, H.-K.; Shin, J. W.; Ryoo, R.; et al. [Ultrafast](https://doi.org/10.1038/s41467-019-09872-w) Charge Transfer Coupled with Lattice Phonons in [Two-Dimensional](https://doi.org/10.1038/s41467-019-09872-w) Covalent Organic [Frameworks.](https://doi.org/10.1038/s41467-019-09872-w) *Nat. Commun.* 2019, *10*, 1873.

(41) He, J.; Fang, W.-H.; Long, R.; Prezhdo, O. V. Why [Oxygen](https://doi.org/10.1021/jacs.0c06769?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Increases Carrier Lifetimes but Accelerates [Degradation](https://doi.org/10.1021/jacs.0c06769?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of CH3NH3PbI3 under Light Irradiation: [Time-Domain](https://doi.org/10.1021/jacs.0c06769?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Ab Initio [Analysis.](https://doi.org/10.1021/jacs.0c06769?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2020, *142*, 14664−14673.

(42) Shockley, W.; Read, W. T., Jr. Statistics of the [Recombinations](https://doi.org/10.1103/PhysRev.87.835) of Holes and [Electrons.](https://doi.org/10.1103/PhysRev.87.835) *Phys. Rev.* 1952, *87*, 835.

(43) Zhang, J. Z. Ultrafast Studies of Electron [Dynamics](https://doi.org/10.1021/ar960178j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) in [Semiconductor](https://doi.org/10.1021/ar960178j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Metal Colloidal Nanoparticles: Effects of Size and [Surface.](https://doi.org/10.1021/ar960178j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Acc. Chem. Res.* 1997, *30*, 423−429.

(44) Grundmann, M. *Physics of Semiconductors*; Springer, 2010; Vol. *11*.

(45) Wei, H.; Luo, J.-W.; Li, S.-S.; Wang, L.-W. [Revealing](https://doi.org/10.1021/jacs.6b03524?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) the Origin of Fast Electron Transfer in TiO₂-Based [Dye-Sensitized](https://doi.org/10.1021/jacs.6b03524?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Solar Cells. *J. Am. Chem. Soc.* 2016, *138*, 8165−8174.

(46) Wang, S.; Huang, M.; Wu, Y.-N.; Chu, W.; Zhao, J.; Walsh, A.; Gong, X.-G.; Wei, S.-H.; Chen, S. [Effective](https://doi.org/10.1038/s43588-022-00297-y) Lifetime of Non-Equilibrium Carriers in [Semiconductors](https://doi.org/10.1038/s43588-022-00297-y) from Non-Adiabatic Molecular Dynamics [Simulations.](https://doi.org/10.1038/s43588-022-00297-y) *Nat. Comput. Sci.* 2022, *2*, 486−493.

(47) Niehaus, T. A.; Suhai, S.; Della Sala, F.; Lugli, P.; Elstner, M.; Seifert, G.; Frauenheim, T. [Tight-Binding](https://doi.org/10.1103/PhysRevB.63.085108) Approach to Time-Dependent [Density-Functional](https://doi.org/10.1103/PhysRevB.63.085108) Response Theory. *Phys. Rev. B* 2001, *63*, No. 085108.

(48) Yuan, D.; Pi, H.; Jiang, Y.; Hu, Y.; Zhou, L.; Jia, Y.; Su, G.; Fang, Z.; Weng, H.; Ren, X.; et al. Highly In-Plane [Anisotropic](https://doi.org/10.1007/s11433-022-2032-7) Optical Properties of Fullerene [Monolayers.](https://doi.org/10.1007/s11433-022-2032-7) *Sci. China Phys. Mech. Astron.* 2023, *66*, 247211.

(49) Devlin, S. W.; Jamnuch, S.; Xu, Q.; Chen, A. A.; Qian, J.; Pascal, T. A.; Saykally, R. J. [Agglomeration](https://doi.org/10.1021/jacs.3c05093?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Drives the Reversed Fractionation of Aqueous Carbonate and [Bicarbonate](https://doi.org/10.1021/jacs.3c05093?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) at the Air−Water Interface. *J. Am. Chem. Soc.* 2023, *145*, 22384−22393.

(50) Menzel, J. P.; Papadopoulos, A.; Belic,́ J.; de Groot, H. J.; Visscher, L.; Buda, F. [Photoinduced](https://doi.org/10.1021/acs.jpcc.0c09551?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Electron Injection in a Fully Solvated [Dye-Sensitized](https://doi.org/10.1021/acs.jpcc.0c09551?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Photoanode: A Dynamical Semiempirical [Study.](https://doi.org/10.1021/acs.jpcc.0c09551?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Phys. Chem. C* 2020, *124*, 27965−27976.