- Main
Optimal Transport for Gaussian Mixture Models
Published Web Location
https://doi.org/10.1109/access.2018.2889838Abstract
We introduce an optimal mass transport framework on the space of Gaussian mixture models. These models are widely used in statistical inference. Specifically, we treat Gaussian mixture models as a submanifold of probability densities equipped with the Wasserstein metric. The topology induced by optimal transport is highly desirable and natural because, in contrast to total variation and other metrics, the Wasserstein metric is weakly continuous (i.e., convergence is equivalent to convergence of moments). Thus, our approach provides natural ways to compare, interpolate and average Gaussian mixture models. Moreover, the approach has low computational complexity. Different aspects of the framework are discussed and examples are presented for illustration purposes.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-