Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Vestigial singlet pairing in a fluctuating magnetic triplet superconductor and its implications for graphene superlattices.

Abstract

Stacking and twisting graphene layers allows to create and control a two-dimensional electron liquid with strong correlations. Experiments indicate that these systems exhibit strong tendencies towards both magnetism and triplet superconductivity. Motivated by this phenomenology, we study a 2D model of fluctuating triplet pairing and spin magnetism. Individually, their respective order parameters, d and N, cannot order at finite temperature. Nonetheless, the model exhibits a variety of vestigial phases, including charge-4e superconductivity and broken time-reversal symmetry. Our main focus is on a phase characterized by finite d ⋅ N, which has the same symmetries as the BCS state, a Meissner effect, and metastable supercurrents, yet rather different spectral properties: most notably, the suppression of the electronic density of states at the Fermi level can resemble that of either a fully gapped or nodal superconductor, depending on parameters. This provides a possible explanation for recent tunneling experiments in the superconducting phase of graphene moiré systems.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View