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Vestigial singlet pairing in a fluctuating
magnetic triplet superconductor and its
implications for graphene superlattices

Prathyush P. Poduval1,2 & Mathias S. Scheurer 3,4

Stacking and twisting graphene layers allows to create and control a two-
dimensional electron liquid with strong correlations. Experiments indicate
that these systems exhibit strong tendencies towards both magnetism and
triplet superconductivity. Motivated by this phenomenology, we study a 2D
model of fluctuating triplet pairing and spin magnetism. Individually, their
respective order parameters, d and N, cannot order at finite temperature.
Nonetheless, themodel exhibits a variety of vestigial phases, including charge-
4e superconductivity and broken time-reversal symmetry. Our main focus is
on a phase characterized by finite d ⋅N, which has the same symmetries as the
BCS state, aMeissner effect, andmetastable supercurrents, yet rather different
spectral properties: most notably, the suppression of the electronic density of
states at the Fermi level can resemble that of either a fully gapped or nodal
superconductor, depending on parameters. This provides a possible expla-
nation for recent tunneling experiments in the superconducting phase of
graphene moiré systems.

Strongly correlated systems often exhibit complex phase diagrams
with multiple phases, characterized by long-range or quasi-long-range
order (QLRO) of different order parameters. Aside from phase com-
petition as a possible origin, a rich set of phases might also be
understood as differentmanifestations of an underlying primary order
—a concept often referred to as “intertwined orders”1. For instance,
thermal or quantum fluctuations can disorder a primary order para-
meter, while higher-order composite order parameters can still sur-
vive. An example of such a “vestigial phase”2,3 is the charge-4e
superconducting state that emerges when a charge-2e pair density
waveorder parameter,ΔQ, itself vanishes, yetΔQΔ−Qdoes not4; this and
other forms of charge-4e superconductivity have attracted a lot of
attention5–18, in particular, as a result of recent experiments19,20.

Another exciting recent development is the emergence of twisted
graphene moiré superlattices as versatile playgrounds for strongly
correlated physics21,22. These systems display a variety of different
phases suchas nematic23–25 anddensity-waveorder26–28, different forms
of magnetism29–33, and, possibly unconventional34,35,

superconductivity36; magnetism and superconductivity appear in the
same density range34,35,37–41 and recent experiments33,42 demonstrate
that they can coexist microscopically. Motivated by these observa-
tions, we here study the case of two primary order parameters: a fully
gapped spin–triplet superconductor (d), which could explain43 the
subgap states at strong tunneling in recent experiments35, and, in line
with the conclusions of41,44, magnetic order (N) with antiparallel spins
in the twovalleys. At finite temperature,T > 0, itmust hold 〈d〉 = 〈N〉 = 0
in two dimensions (2D). However, there are several different vestigial
phases characterized by the composite order parameters ϕdd = d ⋅d,
ϕdN =d ⋅N, and ϕddN = i(d† ×d) ⋅N. These include not only a charge-4e
superconductor45,46, see Fig. 1a, but also a charge-2e state, which has
the same symmetries as and is, hence, adiabatically connected to the
BCS state. However, it should primarily be thought of as a condensate
of three electrons and a hole, see Fig. 1b, or, more formally, QLRO of
ϕdN.Wedevelop a theory for this state and study its spectral properties
at finite T, which are rather different from those of the BCS state.
Depending on T and ϕdN, we obtain a low-energy suppression of the
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density of states (DOS) similar to a fully gaped or nodal state. This
could provide an alternative explanation43,44,47,48 to the tunneling data
of 34,35, which does not require any momentum dependence in the
superconducting order parameter.

Results
Model
Weconsider a 2Dmodel,which is similar in spirit to the celebrated spin
fermion model49, and describes both triplet superconductivity and
spin magnetism, with three-component order parameter fields d
(complex) and N (real), respectively. Denoting the electronic field
operators of spin s =↑,↓ (Pauli matrices s) and in valley τ = ± (Pauli
matrices τ) by ck,s,τ, where k = (iωn, k) comprisesMatsubara frequencies
and 2D momentum, they couple as

Sc = λ
Z
k,q

cyk�qsNqτzck + ðcyk�qsdqisyτyc
y
�k + H.c. Þ

h i
:

Note thatN couples anti-ferromagnetically in the two valleys; while the
ferromagnetic case can be studied similarly, we focus on antiferro-
magnetism not only for concreteness here but also because recent
microwave experiments41 and multiple other experiments44 favor this
scenario. The bare dynamics of d and N is governed by

Sχ =
Z
q
χ�1
N ðqÞNqN�q + χ

�1
d ðqÞdy

qdq

h i
:

We take the susceptibilitites to be χμðqÞ= χμ=ðrμ +Ω2
n + v

2
μq

2Þ, μ =N, d,
where q = (iΩn, q) and Ωn are bosonic Matsubara frequencies. Up to
quartic order, the local bosonic interactions allowed by the symme-
tries listed in Table 1 can be written as SV =

R
xV ðdðxÞ,NðxÞÞ with

V =b1ðdydÞ2 +b2jddj2 + b3N
4 + c1jdN j2 + c2ðdydÞN2: ð1Þ

Finally, the bare electronic action is given
by Se =

R
kc

y
k,τ,s �iωn + ϵτ�k
� �

ck,τ,s.

Zero-temperature phases
To gain an overview of the different possible phases at zero tem-
perature, we start with a simplemean-field analysis, which proceeds by
minimizing the potential term SV for different values of b1,2,3 and c1,2.
Assuming that both 〈d〉 and 〈N〉 are non-zero and homogeneous, we
obtain the four distinct zero-temperaturephases labeled (A), (B1,2), and

(C) in Fig. 1c, with respective symmetries indicated in blue (cf. Table 1).
We note that there is no relation of the labeling of the phases we use
here to the nomenclature in superfluid 3He. Using ê1,2,3 2 R3 to denote
orthogonal unit vectors, we haveN =N0ê1 and d =d0e

iα ê2 in phase (A),
which breaks SO(3) completely, while Θ is preserved (in any gauge-
invariant observable); as for any phase with 〈N〉 ≠0, C2z is broken. In
phase (B1),N andd are aligned; we, thus, obtain a residual spin-rotation
symmetry SO(2) along that direction andΘ is preserved too. Beyond a
critical value of b2, an additional component with relative phase π/2
emerges in d, defining phase (B2) where N =N0ê1 and
d =d0e

iαðê1 + iηê2Þ, with 0 < η < 1; this is a distinct phase as η ≠0 breaks
both the residual SO(2) spin symmetry and Θ. Finally, phase (C) is
characterized by N =N0ê1 and d =d0e

iαðê2 + iê3Þ. Consequently, Θ is
also broken but a residual SO(2) spin-symmetry remains. We finally
point out that the location of the different phases in Fig. 1(c) is
straightforward to understand intuitively. Positive (negative) c1 dis-
favors (favors) alignment of d along N, which is why these two vectors
are perpendicular in phase (A) and (C) [are (partially) aligned in (B1,2)].
What is more, negative (positive) b2 prefers a unitary (non-unitary)
triplet component to maximize (minimize) ∣dd∣ at a fixed length of d.

Vestigial phases at finite T
Importantly, 〈d〉, 〈N〉 ≠0 is not possible for finite T, and thus, our dis-
cussion of symmetries and phases above is only valid for T =0 in 2D.
Nonetheless, the T =0 results will help us understand the possible
vestigial phases at finite temperatures, T >0, in our model, which will
be the focus of the remainderof thispaper. To studyT > 0,where SO(3)
spin-rotation symmetry is preserved and 〈d〉 = 〈N〉 = 0, it is convenient
to define the following composite order parameters ϕdd = d ⋅d,
ϕdN =d ⋅N, and ϕddN = i(d† ×d) ⋅N, with symmetry properties listed in
Table 1. These are constructed as the lowest-order, local combinations

Fig. 1 | Possible phases. We illustrate schematically the two finite-T vestigial
superconducting phases of our model, a a charge-4e state where two pairs of
electrons each in a triplet state condense, and b where three electrons and a hole
pair; in both cases, the objects that condense are spin singlets in agreement with
theMermin–Wagner theorem. cMean-field phase diagram for rd = rN, b3 = b1, c2 = 0,

where we indicate the symmetries at T =0 (blue), those of the resulting vestigial
phases at T >0 (red), and which composite order parameters are finite. Solid
(dashed) orange lines are phase transitions at T =0 and T >0 (become a crossover
at T >0).

Table 1 | Relevant symmetries g and their action on the field
operators

g ck N d ϕdd ϕdN ϕddN

U(1) eiφck N e−2iφd e−4iφϕdd e−2iφϕdN ϕddN

SO(3) eiφ⋅sck RφN Rφd ϕdd ϕdN ϕddN

C2z τxc−k −N −d ϕdd ϕdN −ϕddN

Θ isyτxc−k N −d*
ϕ*

dd �ϕ*
dN

−ϕddN

HereRφ is theorthogonalmatrix obeyinge−iφ⋅sseiφ⋅s =R(φ)s. All symmetriesare linear except forΘ,
which is anti-linear.
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of the bosonic fields d and N that are invariant under SO(3) spin-
rotations while transforming non-trivially under U(1)-gauge or the
point symmetries. By virtue of being SO(3) invariant, they can exhibit
long-range (in case ofϕddN) or QLRO (in case ofϕdd,ϕdN) atfinite T. We
indicate this in Fig. 1c for the different phases. This immediately tells us
that, in spite of 〈d〉 =0, phase (A) transitions for finite T into a state
where ϕdd has QLRO and, thus, constitutes a charge-4e super-
conductor (as ϕdN =0), which does not break C2z or Θ (as ϕddN =0);
intuitively, one can think of this state as a condensate of four electrons
forming a spin-singlet out of two triplets, see Fig. 1a. At finite T, (B1) and
(B2) will both preserve all normal-state symmetries and become the
samephase, whichwedenote by (B) in the following. It is characterized
by QLRO not only inϕdd but also inϕdN; as the latter has charge 2e, it is
a charge-2e superconductor and adiabatically connected to the con-
ventional BCS state. Nonetheless, in our current description, this state
should rather be thought of as the condensation of three electrons and
a hole, see Fig. 1b, consisting of a pair of electrons in a triplet state
forming a singlet with a spin-1 particle-hole excitation. In fact, we will
see below that it exhibits spectral properties rather different from
those of the BCS state at finite T. Finally, while phase (C) does not
exhibit any vestigial pairing at T >0, it will have long-range order in
ϕddN and, as such, continues to break both C2z and Θ.

Theory for phase (B)
As c1 < 0 is found when the coefficients in V are computed from high-
energy electronic degrees of freedom within the mean-field theory
(see Methods), we focus on phase (B). To obtain an efficient descrip-
tion of this phase that properly captures the preserved SO(3) sym-
metry at finite temperature, we first decouple the four terms in V using
fourHubbard–Stratonovichfields,ψd ford†d,ψN forN2,ϕd ford ⋅d, and
ϕdN for d ⋅N. We treat them on the saddle-point level, which becomes
exact in the limit where the number of components of d andN is taken
to be infinitely large50. This procedure does not violate
Mermin–Wagner’s theorem (as opposed to taking the limit of infinitely
many fermion flavors). The saddle point values of ψd and ψN will in
general, be non-zero, which we absorb into a redefinition of rd,N. Then,
the effective action for phase (B) becomes SB =Sχ +Se +Sc +Sϕ where
the key new component reads as

Sϕ =
Z

q
ϕ0

dN dq � N�q +ϕ
0
dd dq � d�q + H.c.

h i
: ð2Þ

While generically, both saddle point values ϕ0
dN and ϕ0

dd are expected
to be non-zero simultaneously in phase (B), we take ϕ0

dd ! 0 and
ϕ0

dN � ϕ0≠0 for the following explicit calculations to model the QLRO
of phase (B). Setting ϕ0

dd =0 does not change any symmetries of the
phase, allows for a more compact discussion of the results, and can
formally be seen as the large b2 limit of the theory where ϕ0

dd is
suppressed [cf. Fig. 1c]. More generally than its derivation via
Hubbard–Stratonovich transformations, SB can also be thought of as
the simplest field theory capturing the key aspects of phase (B) in
Fig. 1c at finite T. Crucially, this is still an interacting theory, and
integrating out the bosons yields the effective fermionic description
S0
B =Se +S1 +S2; here S1,2 are the following four-fermion interactions

S1 = �
Z

q

λ2

Mq

χ�1
d

4
Sq � S�q + χ

�1
N Dq �Dy

q

 !
, ð3aÞ

S2 = � 1
2

Z
q

λ2

Mq
ϕ0 Sq �Dy

q +ϕ
*
0 Dq � S�q

� �
, ð3bÞ

with Mq = χ
�1
d χ�1

N � jϕ0j2 and where we introduced the fermionic bi-
linears Sq =

R
kc

y
k +qsτzck and Dq =

R
kc

y
k + qsisyτyc

y
�k to write Eq. (3) in

more compact form. The two terms in S1 describe spin and
superconducting triplet fluctuations, respectively, while S2 captures
the Higgs mechanism underlying phase (B)’s superconducting phe-
nomenology, to be discussed below. Note that Mq ! χ�1

d χ�1
N for

ϕ0→0 such that the first and second terms in Eq. (3a) are proportional
to χN and χd, respectively, as expected.

Minimal mean-field theory
Before analyzing S0 in a more systematic way below, we first study a
simple, effective Hamiltonian associated with setting q = 0 in the
particle-number-non-conserving interaction term in Eq. (3b); we treat
it within self-consistent Hartree–Fock, only allowing for spin-rotation
invariant operators to condense (see SupplementaryAppendixA). This
will help us to understand the behavior of the electronic spectrum in
phase (B) more intuitively in a minimal setting. The effective (static
iΩ = 0) interaction is given by

Z
k1 ,k2

g
6

Ψy
k1
sγzΨk1

� �
� Ψy

k2
siγ�Ψk2

� �
+ H:c:

h i
, ð4Þ

where we introduced the Nambu-spinor Ψk = ðck, + ,isycy�k,�Þ
T
, with

associated Pauli matrices γi in Nambu space and the complex-valued
coupling constant

g = � 6λ2rNϕ0

v2NðrNrd � jϕ0j2Þ
: ð5Þ

The free Hamiltonian reads as H0 =
R
kΨ

y
kϵkγzΨk . Performing a mean-

field decomposition of the interaction in Eq. (4) that retains spin-
rotation invariance in line with the Mermin–Wagner theorem, we
arrive at

HMF =
Z

k
Ψy

k ϵkγz �
1
2
ðg γyCkγz + H.c. Þ

� �
Ψk ð6Þ

�
Z

k
Ψy

k
~ϵkγz + Im ~Δkγy + Re ~Δkγx
h i

Ψk , ð7Þ

whereCk = � hΨkΨ
y
ki, and ~ϵk ,~Δk are the self-consistent band structure

and superconducting singlet order parameter. The resulting self-
consistency equations become

~ϵk = ϵk + ~Δkβ
*
k ð8aÞ

~Δk = ~ϵkβk , βk = g
tanh Ek

2T

� �
2Ek

, ð8bÞ

where Ek =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ϵ2k + j~Δk j2

q
. The solutions of these self-consistency

equations contain a strong temperature dependence. When T > ∣g∣/4,
the coupling ∣βk∣ is smaller than 1 for all k. Thus, the self-consistency
equations can be rearranged as

~ϵk =
1

1� jβk j2
ϵk , ~Δk =

βk

1� jβk j2
ϵk , ð9Þ

which gives us Ek =
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + jβk j2

p
1�jβk j2

ϵk . In this regime, the self-consistent

solution simply renormalizes the Fermi velocity, with states near the
Fermi surface pushed away from it. This is in stark contrast to the
behavior in the usual, BCS-like, mean-field theory of superconductiv-

ity. The difference is tied to the fact that, to linear order, ~Δk only
appears on one side of the self-consistency equations in Eq. (8), which

leads to ~Δk / ϵk in Eq. (9); intuitively, this comes from the extra factor
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of c†c in the interaction ϕ0c†c†c†c +H.c. = c†c(ϕ0c†c† +H.c.) that we
decouple. More formally, it is clear that this cannot arise in BCS-like
mean-field theory of superconductivity since the superconducting
order parameter is the only complex number in the theory that
transforms non-trivially under U(1) gauge transformations, c→ eiφc,
requiring it to appear on both sides of the self-consistency equations.
In our case, this is different since also g→ e−2iφg and, hence, βk→ e−2iφβk,

allowing the behavior ~Δk / βkϵk in Eq. (9).

Since βk also depends on Ek, Ek =
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + jβk j2

p
1�jβk j2

ϵk should be thought of

as a self-consistency equation to be solved for βk or Ek. Nonetheless, it
allows to readily derive asymptotic relations. In the limit ϵk→0, we

have Ek→0 and βk ! jgj
4T = : α < 1, ensuring the expressions in Eq. (9)

are well behaved for ϵk→0. Near ϵk = 0 and for large T≫ ∣g∣, i.e., α≪ 1,

the renormalized spectrum is given by Ek ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 3jgj2

16T2

q
ϵk ; the asso-

ciated temperature-dependent reduction of the electronic mass
reduces the DOS and leads to an expression of the same form that we
will derive diagrammatically in Eq. (11) below.

When T/∣g∣→ 1/4+ (i.e., α→ 1−), we have ∣βk∣2→ 1 as we approach the
Fermi surface ϵk→0, and the expressions in Eq. (9) are not valid any-
more because 1 − ∣βk∣2 is not invertible on the Fermi surface. At this
temperature and for lower temperatures, the self-consistent solutions
open up a gap in Ek when ϵk = 0, which we find by solving the equation
∣βk∣2 = 1, giving us Ek jϵk =0 ∼

ffiffiffiffiffi
12

p
T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4T

jgj
q

as T approaches ∣g∣/4
from below.

In Fig. 2, we illustrate the self-consistent mean-field solutions.
Figure 2a–c shows the renormalized spectrum ~ϵk ,~Δk and Ek respec-
tively, as a function of ϵk for various values ofα. Asα approaches 1 from
below, the slope of ~ϵðϵÞ approaches ∞ at ϵ =0, and ~ϵðϵÞ, becomes non-
analytic at α = 1 At α > 1, the non-analyticity at ϵ =0 turns into a dis-
continuity, with the self-consistent solutions developing a finite gap;
we have checked numerically that including finite momentum transfer
in the mean-field equations regularizes this non-analytic behavior.
Figure 2d shows the resulting DOS in our minimal mean-field model:
for small α, one finds only a partial suppression of the low-energy
spectral weight, in line with our expansion in small α discussed above

and Eq. (11) below; including higher-order corrections leads to a hard
gap for α ≥ 1. At T = 0, we find j~Δj= j~ϵj=2�3=2jgj for ϵ =0, which cor-
responds to a gap of E∣ϵ=0 = ∣g∣/2.

Electronic self-energy
After our simple yet insightful mean-field treatment, we come back to
the full model S0

B with four-fermion interactions in Eq. (3) and analyze
it in a complementary approach that retains the frequency and
momentum dependence. To this end, we employ a matrix-large-N
technique similar to51,52: we add extra indices to the electrons and
bosons, ck,τ,s→ ck,τ,s,a, d→dab and similarly for N, where a, b = 1, 2,…,N,
which are contracted in all terms of SB so as to ensureO(N) symmetry.
In the limit N→∞, the electronic self-energy Σ is given by the “rainbow
diagrams”51,52 shown in Fig. 3(a). In our case, however, Σ involves both
normal (i.e., particle-number-conserving) and anomalous (non-con-
serving) contributions as a result of S2 in Eq. (3b). To represent the
diagrams algebraically, we again shift to the Bogoliubov-de Gennes

basisΨk = ðck, + ,isycy�k,�Þ
T
, with Paulimatrices γi acting on this space. In

this basis, the free Green’s function isG0(iω, ϵ) = iω − ϵγz. Up to the first
order in λ2, see Fig. 3b and Supplementary Appendix B for details on
the evaluation of the diagrams, the spin–spin self-energy term can be

written as Σ1ðkÞ=3λ2
R
q
χ�1
d
ðqÞ

2Mq
G0ðiω+ iΩ,ϵk +qÞ, while the triplet–triplet

term is Σ2ðkÞ= 12λ2
R
q
χ�1
N ðqÞ
Mq

G0ðiω+ iΩ,� ϵk +qÞ. After performing a

gauge transformation to make ϕ0 real, the anomalous term from the
spin–triplet interaction is given by

Σ3ðkÞ=3ϕ0

Z
q

λ2

Mq
fγy, γzG0ðiω+ iΩ, ϵk +qÞg: ð10Þ

For concreteness and since spin fluctuations are believed to occur
already at higher energies than superconducting fluctuations in gra-
phene moiré systems37,38, we focus on rd > rN; for concreteness, we will
use rd=rN =9, v2d=v

2
N =8, λ2=v2N

ffiffiffiffiffi
rN

p
= 1, χN = χd , and set χμ = 1 by rescal-

ing of the fields, but note that no fine-tuning is required for the
following results.

Fig. 2 | Self-consistent Hartree–Fock. a–c The renormalized band parameters
~ϵ,~Δ,E as a function of the free energy ϵ within self-consistent Hartree–Fock. For
α < 1, ~ϵ and ~Δ vary linearly with ϵ near ϵ =0. The corresponding slope diverges as
α→ 1, and becomes non-analytic at α = 1, developing a discontinuity in the band

parameters at ϵ =0 for α > 1, resulting in a hard gap. (d) The corresponding density
of states within self-consistent Hartree–Fock, very similar behavior is foundwith an
explicit hard gap for α > 1.
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Density of states
Figure 3c shows the effect of the normal contributions of the self-
energy Σ1,2 on the constant DOS around the Fermi level of a 2D band
structure. The effect of Σ1 is to push the peak of the free spectral
function at energy ϵ away from ω =0. This results in the opening of a
gap (which can be soft depending on the parameter regime), very
similar to fluctuating antiferromagnetism discussed in the
cuprates53–55. Σ2 on the other hand, has the opposite effect, where it
pushes states toward ω =0. This is because Σ1 and Σ2 have the exact
same functional form with one key difference: ϵk+q of Σ1 is replaced
by − ϵk+q inΣ2. As a result,Σ2 “sees” the state at energy − ϵ, and pushes it
away from 0, resulting in the actual pole atω = ϵ shifting towardsω = 0
(or even crossing 0). This is why high-energy states accumulate in the
vicinity of ω = 0.

The effect of the total normal self-energy Σ1 + Σ2 is to enhance
the DOS in the vicinity of the Fermi level, see Fig. 3c. The anomalous
contribution Σ3 does not interfere with these effects since it occurs in
the γy channel. The role of Σ1 + Σ2 can, thus, be intuitively thought of
as providing a renormalized DOS in the normal state, on top of which
the anomalous Σ3 opens up a gap. We have checked (see Supple-
mentary Appendix C) by numerically solving the self-consistency
equation for the self-energy [Fig. 3a] in the limit (of large vμ) where
only the q = 0 term of the momentum sum contributes that higher-
order corrections do not change our results qualitatively for small
ϕ0. For instance, Fig. 3d shows the numerical solution for the Green’s
function G = iω − ϵ(iω)γz +Δ(iω)γy in Matsubara space upon including
the effect of higher-order terms from S2 [Fig. 3a]; the difference to
the first-order result is small.

To gain intuition for the impact of Σ3 on the DOS, we first focus
again on the q =0 term of the momentum sum in Eq. (10). In this limit,
one can easily see (cf. Supplementary Appendix D) that Σ3 vanishes
linearly in ϵk for small energies. Note that this is very different from
conventional BCS theory, where the anomalous self-energy is just
given by the order parameter Δ and, thus, constant and finite around
the Fermi level; the difference arises from the fact that, although we
also keep ϕ0 as a constant, it is associated with a four-electron inter-
action,S2 in Eq. (3b), and, hence, leads toone- or higher-loopdiagrams
contributing to Σ3. This is what induces themomentumdependence in
our case.

Since Σ3 is in the γy channel, the effect of any non-zero value is to
generically open a gap. As a result of the linear behavior, Σ3∝ ϵk, for
ϵk→0, the states exactly at zero energy are unaffected, but slightly
away from it, the states get pushed away tohigher energy; this is clearly
visible in Fig. 4a. The fact that there is still a peak in the spectral
function at ω =0 for finite but sufficiently small coupling strength is in
line with previous works on related one-loop self-energy diagrams56. In
contrast, for large energies, Σ3 is readily seen to tend to zero. The
spectral function, thus, remains asymptotically unaffected, as can be
seen in Fig. 4b. Taken together, we expect the DOS to be reduced (but
not fully suppressed for smallϕ0) in an energy range around the Fermi
level, exhibiting an enhancement with respect to its normal-state value
at intermediate energies, and then approaching the normal-state limit
at larger energies.

To demonstrate this explicitly beyond the simple q = 0 limits,
we approximate ϵk+q ≃ ϵk + vF q∥ + q2/(2m), where q∥ is the compo-
nent of q along k, and numerically evaluate the momentum inte-
grals to find the total self-energy Σ = Σ1 + Σ2 + Σ3. Choosing
vF = 1:5vN ,2m=

ffiffiffiffiffi
rN

p
=v2N for concreteness, Fig. 4(c) shows the result-

ing DOS. As expected, we see that there is a suppression of the DOS.
However, for small values of ϕ0, the resulting DOS has a V-shaped
behavior, which is typically only seen in nodal states (with either
nodal lines or points). Recall that the superconducting phase in our
model is symmetry-equivalent to a conventional BCS state and that
the triplet superconductor that arises at T = 0 in-phase (B) will be
fully gapped. For largerϕ0, the gap atω = 0 increases and resembles
a hard BCS gap. The suppression of the DOS ρF at ω = 0 can be
estimated analytically at finite temperature by again taking the limit
(of large vμ) where the integration over q can be replaced by an
evaluation at q = 0; we find

ρF ðϕ0Þ
ρF ðϕ0 =0Þ

=
1ffiffiffiffiffiffiffiffiffiffiffiffi

1 +α2
p , α =

jgj
4T

, ð11Þ

with g defined in Eq. (5). It holds ∣ϕ0∣2 < rdrN due to the
Mermin–Wagner theorem. As ∣ϕ0∣ increases, α increases the sup-
pression of the DOS, and near the instability point of ∣ϕ0∣2 = rdrN,
where the bosons would condense, there are no states near the
Fermi surface.

Fig. 3 | Contributions to self-energy. Diagrams contributing to the fermionic self-
energy Σ a in the matrix-large-N limit defined in the main text and b to first order.
c Impact of spin (Σ1) and triplet fluctuations (Σ2) on the constant DOS (blue) of a 2D
band with finite bandwidth. (d) Comparing the first order solution (ϵ1,Δ1) and self-

consistent solution (ϵN,ΔN) for G = iω − ϵ(iω)γz +Δ(iω)γy for S2 taking into account
higher order terms shown in (a) (both without momentum integration). We
use ϵ=

ffiffiffiffiffi
rN

p
=0:1,ϕ0=rN =0:5.
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Electromagnetic response
We will finally demonstrate that the superconducting phase char-
acterized by ϕ0 ≠0 has the same electromagnetic phenomenology as
BCS superconductors, despite the unusual electronic spectral prop-
erties. To this end, we study off-diagonal long-range order
(ODLRO)57–59, which implies the Meissner effect60, flux quantization61,
Josephson effect, and persistent currents62. First, focusing on
the electrons, we show that hcys1 , + ðx1Þcys2,�ðx2Þcs02,�ðx

0
2Þcs01 , + ðx

0
1Þi !

n0ðΨ*
Fðx12ÞÞs1 ,s2 ðΨFðx0

12ÞÞs01 ,s02 , with ΨF ≠0, as jxj � x0
jj ! 1 at finite

x12 = x1 − x2 and x0
12 = x

0
1 � x0

2, to leading (first) order in ϕ0 (see Sup-
plementary Appendix E); as non-zero ΨF to linear order in ϕ0 implies
that it cannot vanish identically for genericϕ0, this is sufficient to show
the presence of ODLRO. We find the “macroscopic wave function” to
be a singlet,ΨF(x) = isyψF(x), as expected since spin-rotation symmetry
is preserved at finite T, with ψF(x) shown in Fig. 5a. Alternatively, one
can demonstrate ODLRO to arbitrary order in ϕ0, by focusing on the
bosons: to zeroth order in λ, we find hðdyðx1ÞNðx2ÞÞðdðx0

1ÞNðx0
2ÞÞi !

ψ*
Bðx12ÞψBðx0

12Þ as jxj � x0
jj ! 1, with ψB(x) plotted in Fig. 5b along

with an analytic asymptotic form for large x; in Supplementary
Appendix F, we show that this leads to the same constraints as the
conventional form of bosonic ODLRO57,58.

Finally, the connection to the textbook theory of super-
conductivity can be made more explicit by deriving the analog of the
time-dependentGinzburg–Landay theory:we reinstate fluctuations via
ϕ0→ϕ(x, τ) and integrate out all other degrees of freedom yielding

SGL =
Z

x,τ
ρjDτϕj2 + ðrϕ + jc1j�1Þjϕj2 + v2 jDϕj2
h i

ð12Þ

to leading order in ϕ and gauge-covariant derivatives
ðDτ ,DÞμ =∂μ � i2eAμ. We evaluated the coefficients in SGL to leading
(zeroth) order in Sc and find ρ, vϕ > 0 and rϕ <0 for low T (see
Supplementary Appendix G); the state with QLRO in ϕ0 thus
corresponds, as usual, to the Higgs phase, with Meissner effect and
massive Higgs mode, but without Goldstone modes.

Discussion
We have studied the finite-T vestigial phases, see Fig. 1, associated
with two primary order parameters, d and N, describing a fully
gapped triplet superconductor and spin magnetism, respectively.
While this includes phases where only broken time-reversal

symmetry (C) or charge-4e pairing (phase A) can survive finite-
temperature fluctuations, our main focus has been on phase B1,2,
which is best thought of as a condensate of spin-0 bosons ϕ formed
by two electrons in a triplet state and an electron and a hole, which
are also in a triplet configuration. This defines a Higgs phase without
any broken symmetry, effective time-dependent Ginzburg–Landau-
like action given by Eq. (12), and ODLRO; meanwhile, its spectral
electronic properties are very unusual: as can be seen in Fig. 2(d)
and Fig. 4(c), varying 〈ϕ〉 =ϕ0 changes the low-energy DOS from
partial suppression, akin to that of a nodal superconducting state,
to a hard gap.

We emphasize that such a state is generically expected to emerge
in a range of small but finite temperatures in a two-dimensional system
that exhibits triplet superconductivity and spin magnetism at T =0.
The current experiment indicates that alternating-twist-angle gra-
phenemoiré superlattices indeed realize thisphenomenologically and,
thus, provide an ideal testbed for this theory. In fact, recent tunneling
data in the superconducting state34,35 show a V-shaped DOS that can
become U-shaped upon doping. While this could also be explained by
an exotic interband order parameter63, our proposed state provides a
very natural interpretation of these observations: the value of ϕ0 is
expected to vary from sample to sample and also changewith electron
filling, likely decreasing whenmoving further away from the insulator,
which would lead to a transition from U- to V-shaped, as seen in
experiment34. We finally point out that the suppression of N would
immediately also suppress ϕ0 in our model and could, therefore,
explain why superconductivity is connected to the reset behavior in
trilayer graphene34,35,39,40.

Naturally, there are many open questions related to the novel
state we propose here, such as understanding quantitative differences
in its electromagnetic response, such as penetration depth, compared
to a conventional BCS state and its behavior under the influence of
disorder. Furthermore, it would be interesting to study the exotic
spectral properties with other techniques such as Monte-Carlo simu-
lations and dynamicalmean-field theory.We leave this for futurework.

Methods
Mean-field form of the bosonic interactions
In the discussion above, we viewed the field theory defined by the
action S =Se +Sχ +Sc +SV as an effective low-energy theory that arises
when high-energy electronic degrees of freedom have already been

Fig. 4 | Spectral properties. Spectral weight as a function of ω with (blue) and
without (purple) Σ3 a close to ϵk =0 and b including a larger energy range; in both
cases, we focus on the q =0 contribution (see text). c The effect of all three self

energy contributions Σ1 + Σ2 + Σ3 (including the momentum integration) on the
DOS. For small ϕ0, there is suppression of the DOS at ω =0, which resembles the
V-shaped DOS of a nodal state. For large ϕ0, the gap resembles a hard BCS gap.
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integrated out. Due to the symmetry and locality constraints, it only
depends on a few parameters, rμ, vμ, b1,2,3, c1,2. As can be seen in
Fig. 1(c), in particular, (the sign of) the parameters c1 and b2 entering V
crucially determine the phase of the system. We here provide an esti-
mate for these parameters by computing them from high-energy
electronic degrees of freedom within the mean-field theory. To this
end, we replace the bosonic fields with classical homogeneous and
time-independent vectors, Nq→ δq,0N, dq→ δq,0d, in Se +Sχ +Sc; this
yields

SHE =
Z
k
cyk,τ,s �iωn + ϵτ�k

� �
ck,τ,s

+ λ
Z
k
cyks � Nτzck + cyks � d isyτyc

y
�k + H.c.

� �h i
,

ð13Þ

which we now view as our full action, also containing the high-energy
degrees of freedom. Integrating out the electronic degrees of freedom
andexpanding the resulting action in termsofN andd toquartic order,
one obtains exactly the same terms as in V in Eq. (1), as expected by
symmetry. Moreover, one finds

c1 = b2 = � b1=2 <0, ð14Þ

with b1 = 32 λ
4T
X
ωn

Z
d2k

ð2πÞ2
1

ðω2
n + ϵ

2
k Þ

2 >0: ð15Þ

As stated in the main text, this places us into phase (B). We note,
however, that fluctuation corrections to themean field canmodify the
values of these coupling constants significantly46,64,65. For instance,
ferromagnetic fluctuations can change the sign of b2 to positive
values46.

Data availability
The data generated in this study are available in the Zenodo database
under the accession code https://zenodo.org/records/10547103.

Code availability
The codes used to generate the plots are available from the corre-
sponding author upon request.
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