Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Electronic Theses and Dissertations bannerUC Irvine

Nonlinear Magnetic Damping and Parametric Excitation of Magnetization in Nanomagnets

Creative Commons 'BY-NC' version 4.0 license
Abstract

This dissertation explores the study of magnetization dynamics in a ferromagnetic thin film and nanoscale ferromagnets. In bulk ferromagnets, nonlinear interactions generally couple each spin wave eigenmode to a continuum of other available modes through multi-magnon scattering. The multi-magnon scattering can potentially limit an achievable amplitude of spin wave modes by pumping energy into other energy-degenerate modes. For example, two-magnon scattering process in the presence of impurities and defects is known to act as a channel of magnetic damping in ferromagnetic thin films. I present an observation of the two-magnon scattering in epitaxial La0.7Sr0.3MnO3 (LSMO) and LSMO/Pt thin films, investigate its impact on the evaluation of low magnetic damping in LSMO, and properties of spin transport through the LSMO/Pt interface for potential nanodevice applications.

Magnetic damping is a critical parameter that determines the speed and energy efficiency of the magnetic nanodevice such as spin-torque memory and oscillators. In a nanomagnet, the geometric confinement breaks translational invariance of the system and discretizes the spin wave spectrum, which helps to suppress the kinematically allowed multi-magnon scattering. The suppression of multi-magnon scattering enables an unusual type of nonlinear interactions and excitation processes in nanoscale ferromagnets that are qualitatively different from that in bulk ferromagnets. In this regard, I report an observation of nonlinear resonant three-magnon scattering and its effect in the damping of nanoscale magnetic tunneling junctions (MTJs). The spectral lineshape of a spin wave resonance undergoing three-magnon scattering exhibits a minimum at the resonance frequency in sharp contrast to the amplitude maximum seen in the linear resonance regime. This unusual behavior arises because the damping parameter of a spin wave ceases to be frequency-independent and itself becomes a resonant function of the excitation frequency. Also, such resonant nonlinear damping dramatically alters the response of a nanomagnet to antidamping spin-torque in a counterintuitive way - the antidamping torque can increase the damping of a spin wave mode that undergoes the nonlinear resonant scattering.

Lastly, I present an experimental demonstration of electric-field driven parametric excitation of a spin wave eigenmode in nanoscale MTJ. This work shows that the microwave electric field applied across the MTJ electrode efficiently couples to the out-of-plane component of oscillating magnetization via voltage-controlled magnetic anisotropy (VCMA) in the system. The threshold voltage of parametric excitation is found to be well below 1 Volt, which makes it attractive for magnonic nanodevices such as spin wave logic. The electric-field driven parametric excitation of magnetization is a versatile method for generating short-wavelength spin wave and thus results in this work pave the way towards energy-efficient excitation of magnetization dynamics in thin films of metallic ferromagnets and nanodevices based on magnetic multilayers.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View