Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Airborne measurement of OH reactivity during INTEX-B

Abstract

The measurement of OH reactivity, the inverse of the OH lifetime, provides a powerful tool to investigate atmospheric photochemistry. A new airborne OH reactivity instrument was designed and deployed for the first time on the NASA DC-8 aircraft during the second phase of Intercontinental Chemical Transport Experiment-B (INTEX-B) campaign, which was focused on the Asian pollution outflow over Pacific Ocean and was based in Hawaii and Alaska. The OH reactivity was measured by adding OH, generated by photolyzing water vapor with 185 nm UV light in a moveable wand, to the flow of ambient air in a flow tube and measuring the OH signal with laser induced fluorescence. As the wand was pulled back away from the OH detector, the OH signal decay was recorded; the slope of -Delta 1n(signal)/Delta time was the OH reactivity. The overall absolute uncertainty at the 2 sigma confidence levels is about 1 s(-1) at low altitudes (for decay about 6 s(-1)), and 0.7 s(-1) at high altitudes (for decay about 2 s(-1)). From the median vertical profile obtained in the second phase of INTEX-B, the measured OH reactivity (4.0 +/- 1.0 s(-1)) is higher than the OH reactivity calculated from assuming that OH was in steady state (3.3 +/- 0.8 s(-1)), and even higher than the OH reactivity that was calculated from the total measurements of all OH reactants (1.6 +/- 0.4 s(-1)). Model calculations show that the missing OH reactivity is consistent with the over-predicted OH and under-predicted HCHO in the boundary layer and lower troposphere. The over-predicted OH and under-predicted HCHO suggest that the missing OH sinks are most likely related to some highly reactive VOCs that have HCHO as an oxidation product.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View