Skip to main content
eScholarship
Open Access Publications from the University of California

On the numerical accuracy in finite‐volume methods to accurately capture turbulence in compressible flows

Published Web Location

https://doi.org/10.1002/fld.5021Creative Commons 'BY-NC' version 4.0 license
Abstract

The goal of the present article is to understand the impact of numerical schemes for the reconstruction of data at cell faces in finite-volume methods, and to assess their interaction with the quadrature rule used to compute the average over the cell volume. Here, third-, fifth- and seventh-order WENO-Z schemes are investigated. On a problem with a smooth solution, the theoretical order of convergence rate for each method is retrieved, and changing the order of the reconstruction at cell faces does not impact the results, whereas for a shock-driven problem all the methods collapse to first-order. Study of the decay of compressible homogeneous isotropic turbulence reveals that using a high-order quadrature rule to compute the average over a finite-volume cell does not improve the spectral accuracy and that all methods present a second-order convergence rate. However the choice of the numerical method to reconstruct data at cell faces is found to be critical to correctly capture turbulent spectra. In the context of simulations with finite-volume methods of practical flows encountered in engineering applications, it becomes apparent that an efficient strategy is to perform the average integration with a low-order quadrature rule on a fine mesh resolution, whereas high-order schemes should be used to reconstruct data at cell faces.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View