Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Ventilation and features of the lung environment dynamically alter modeled intrapulmonary aerosol exposure from inhaled electronic cigarettes

Abstract

Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios. Compared to static conditions, normal breathing decreased peak particle number concentrations (PNCs) and area under the curve (AUC) by 40% and 70%, respectively, and increased particle decay rates fourfold. However, even with ventilation, intrapulmonary PNC levels exceeded 2 × 106 particles/mL in a 4-puff vaping session. Both respiratory rate and tidal volume modulated e-cig aerosol exposure in a manner inversely proportional to minute ventilation. The modeled lung environment (37 °C, 88% relative humidity) also significantly altered particle size distributions by facilitating aerosol transformations such as hygroscopic growth, which further impacted e-cig aerosol exposure and particle removal. This work highlights the dynamic nature of intrapulmonary exposures and underscores the need to account for lung physiology and environmental factors when assessing inhaled e-cig aerosols.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View