- Main
Three-Dimensional Optical Coherence Tomography Employing a 2-Axis Microelectromechanical Scanning Mirror
Abstract
We present a three-dimensional (3-D) optical coherence tomography (OCT) system based on a dual axis microelectromechanical system (MEMS) mirror. The MEMS mirror provides high-speed, high resolution 2-axis scanning while occupying a very small volume with extremely low power consumption. The dimensions of the mirror are 600 × 600 μm, and both axes are capable of scanning up to 30 degree angles at frequencies greater than 3 kHz with good linearity. A 3-D image set is acquired when the MEMS mirror is integrated with the fiber-based OCT system. Via 2-axis lateral scanning, combined with an axial scan, a volume (2 × 2 × 1.4 mm) image of tissue, including a cancerous region, from a hamster cheek pouch was obtained. Using a signal processing technique, image data is normally presented by 3-volume showing views at arbitrary angles and locations. The objective of this work is to show the capabilities of a 3-D OCT system utilizing a MEMS scanner as this technology can readily by applied to realize OCT beam delivery systems such as hand held scanners and endoscopic probes. A MEMS based 3-D OCT system employing a high speed, small volume scanner may have the potential to expand the application area of OCT and revolutionize areas of clinical medicine as well as medical research. © 2005 IEEE.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-