Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Manipulation of the Superhydrophobicity of Plasma-Etched Polymer Nanostructures.

Published Web Location

https://doi.org/10.3390/mi9060304Creative Commons 'BY' version 4.0 license
Abstract

The manipulation of droplet mobility on a nanotextured surface by oxygen plasma is demonstrated by modulating the modes of hydrophobic coatings and controlling the hierarchy of nanostructures. The spin-coating of polytetrafluoroethylene (PTFE) allows for heterogeneous hydrophobization of the high-aspect-ratio nanostructures and provides the nanostructured surface with "sticky hydrophobicity", whereas the self-assembled monolayer coating of perfluorodecyltrichlorosilane (FDTS) results in homogeneous hydrophobization and "slippery superhydrophobicity". While the high droplet adhesion (stickiness) on a nanostructured surface with the spin-coating of PTFE is maintained, the droplet contact angle is enhanced by creating hierarchical nanostructures via the combination of oxygen plasma etching with laser interference lithography to achieve "sticky superhydrophobicity". Similarly, the droplet mobility on a slippery nanostructured surface with the self-assembled monolayer coating of FDTS is also enhanced by employing the hierarchical nanostructures to achieve "slippery superhydrophobicity" with modulated slipperiness.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View