Skip to main content
eScholarship
Open Access Publications from the University of California

The surface termination of a Fe (III) spin crossover molecular salt

Abstract

From a comparison of the known molecular stoichiometry and X-ray photoemission spectroscopy (XPS), it is evident that the Fe(III) spin crossover salt [Fe(qsal)2Ni(dmit)2], where qsal = N(8quinolyl)salicylaldimine, and dmit2- = 1,3-dithiol-2-thione-4,5-dithiolato has a preferential surface termination with the Ni(dmit)2 moiety. This preferential surface termination leads to a significant surface to bulk core level shift for the Ni 2p X-ray photoemission core level, not seen in the corresponding Fe 2p core level spectra. A similar surface to bulk core level shift is seen in Pd 3d in the related [Fe(qsal)2]2Pd(dmit)2, ], where qsal = N(8quinolyl)salicylaldimine, and dmit2- = 1,3-dithiol-2-thione-4,5-dithiolato. Inverse photoemission spectroscopy (IPES), compared with the X-ray absorption spectra at the Ni-L3,2 edge provides some indication of the density of states resulting from the dmit2- = 1,3-dithiol-2-thione-4,5-dithiolato ligand unoccupied molecular orbitals and thus supports the evidence regarding surface termination in the Ni(dmit)2 moiety.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View