Skip to main content
Download PDF
- Main
ManiNetCluster: a novel manifold learning approach to reveal the functional links between gene networks
Published Web Location
https://doi.org/10.1186/s12864-019-6329-2Abstract
Background
The coordination of genomic functions is a critical and complex process across biological systems such as phenotypes or states (e.g., time, disease, organism, environmental perturbation). Understanding how the complexity of genomic function relates to these states remains a challenge. To address this, we have developed a novel computational method, ManiNetCluster, which simultaneously aligns and clusters gene networks (e.g., co-expression) to systematically reveal the links of genomic function between different conditions. Specifically, ManiNetCluster employs manifold learning to uncover and match local and non-linear structures among networks, and identifies cross-network functional links.Results
We demonstrated that ManiNetCluster better aligns the orthologous genes from their developmental expression profiles across model organisms than state-of-the-art methods (p-value <2.2×10-16). This indicates the potential non-linear interactions of evolutionarily conserved genes across species in development. Furthermore, we applied ManiNetCluster to time series transcriptome data measured in the green alga Chlamydomonas reinhardtii to discover the genomic functions linking various metabolic processes between the light and dark periods of a diurnally cycling culture. We identified a number of genes putatively regulating processes across each lighting regime.Conclusions
ManiNetCluster provides a novel computational tool to uncover the genes linking various functions from different networks, providing new insight on how gene functions coordinate across different conditions. ManiNetCluster is publicly available as an R package at https://github.com/daifengwanglab/ManiNetCluster.Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%