- Main
Quantifying the global climate feedback from energy-based adaptation.
Abstract
Many behavioral responses to climate change are carbon-intensive, raising concerns that adaptation may cause additional warming. The sign and magnitude of this feedback depend on how increased emissions from cooling balance against reduced emissions from heating across space and time. We present an empirical approach that forecasts the effect of future adaptive energy use on global average temperature over the 21st century. We estimate that energy-based adaptation will lower global mean surface temperature in 2099 by 0.07 to 0.12 °C relative to baseline projections under Representative Concentration Pathways 4.5 and 8.5. This cooling avoids 0.6 to 1.8 trillion U.S. Dollars ($2019) in damages, depending on the baseline emissions scenario. Energy-based adaptation lowers business-as-usual emissions for 85% of countries, reducing the mitigation required to meet their unilateral Nationally Determined Contributions by 20% on average. These findings indicate that while business-as-usual adaptive energy use is unlikely to accelerate warming, it raises important implications for countries existing mitigation commitments.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-