
UC Berkeley
UC Berkeley Previously Published Works

Title
Quantifying the global climate feedback from energy-based adaptation.

Permalink
https://escholarship.org/uc/item/9642j569

Journal
Nature Communications, 16(1)

ISSN
2041-1723

Authors
Abajian, Alexander
Carleton, Tamma
Meng, Kyle
et al.

Publication Date
2025-04-01

DOI
10.1038/s41467-025-59201-7

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9642j569
https://escholarship.org/uc/item/9642j569#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Article https://doi.org/10.1038/s41467-025-59201-7

Quantifying the global climate feedback
from energy-based adaptation

Alexander C. Abajian 1 , Tamma Carleton 2,3 , Kyle C. Meng 1,3,4 &
Olivier Deschênes1,3

Many behavioral responses to climate change are carbon-intensive, raising
concerns that adaptation may cause additional warming. The sign and mag-
nitude of this feedback depend on how increased emissions from cooling
balance against reduced emissions from heating across space and time. We
present an empirical approach that forecasts the effect of future adaptive
energy use on global average temperature over the 21st century. We estimate
that energy-based adaptation will lower global mean surface temperature in
2099 by 0.07 to 0.12 °C relative to baseline projections under Representative
Concentration Pathways 4.5 and 8.5. This cooling avoids 0.6 to 1.8 trillion U.S.
Dollars ($2019) in damages, depending on the baseline emissions scenario.
Energy-based adaptation lowers business-as-usual emissions for 85% of
countries, reducing the mitigation required to meet their unilateral Nationally
Determined Contributions by 20% on average. These findings indicate
that while business-as-usual adaptive energy use is unlikely to accelerate
warming, it raises important implications for countries’ existing mitigation
commitments.

Human adaptationwill be increasingly critical formoderating harms and
exploiting opportunities under climate change1. Recent studies highlight
that climate adaptation requires significant changes in energy use;
increased energy consumption has been shown to reduce excess mor-
tality and protect well-being in homes, workplaces, and schools under
extreme temperatures2–10. Energy use is carbon-intensive: cooling
demand alone comprised 10% of recent global electricity consumption
and is expected to rise substantially during the 21st century11. This raises
the question of whether adaptation to climate change may itself induce
additional warming, a phenomenon we call the Climate Adaptation
Feedback (CAF). The CAF is the anthropogenic analog to geophysical
climate feedback mechanisms (e.g., declines in oceanic CO2 uptake or
albedo) that can amplify global climate change12. It captures how
behavioral responses to climate change may be maladaptive by ulti-
mately increasing future globalmean surface temperatures (GMST)10,13,14.

Prior work has noted and made progress toward assessing the
potential feedback between energy used for adaptation and the

climate. Recent analyses quantify the responsiveness of historical
energy demand to weather and use such estimates to project future
global energy consumption under climate change8,15,16. However, these
studies do not assess the impacts of these changes in energy con-
sumption on global temperatures. One study does estimate a version
of the CAF using a regional Integrated Assessment Model (IAM),
modeling adaptation as changes in the productivity of different fuels
used as inputs in production, and finds a positive feedback in which
adaptive energy use raises global mean surface temperature17. This
analysis assumes regional planners set optimal policy for energy use,
adaptation, and mitigation18 and it captures key general equilibrium
channels, such as how adaptation affects prices, expectations, and
investment.

This paper develops a data-driven framework for quantifying the
CAF driven by adaptive energy consumption. We calculate the CAF
over the course of the 21st century by combining high-resolution,
subnational projections of energy consumption responses to
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anthropogenic climate change with country- and energy-specific CO2

emissions intensities. Our calculation accounts for energy consump-
tion implications of all behaviors and investments that individuals,
communities, and firms undertake in response to temperature change
across all non-transport sectors including residential, commercial,
industrial, and agricultural sectors8, covering 142 countries or nearly
80% of current global CO2 emissions19. It is built from state-of-the-art,
globally-comprehensive, empirical estimates of how energy demand
responds to changing temperatures8. These estimates incorporate
heterogeneous effects of a changing climate on energy consumption
across fuels and locations2,3,8,9,15,20–22, aswell as how income growth and
climate change will alter these responses over time.

In contrast to prior assessments of the CAF17, we do not impose
the structure of an IAM. Instead, we assess how adaptation to climate
change will affect future temperatures using empirically-estimated
energy demand responses and exogenous future trajectories of base-
line warming, economic growth, and population (see “Methods”).
Relative to earlier analyzes, our study increases the spatial resolution
of energy demand responses used to forecast changes in emissions,
includes the response to the full distribution of daily temperature
realizations rather than restricting inputs to realizations of local
extremes, reports uncertainty from both climatological and statistical
sources, and accounts for country-level heterogeneity in emissions
intensities and their dynamics for electricity and other fuels. However,
our statistically-based method necessarily foregoes modeling general
equilibrium channels that are captured by IAMs, making the two
approaches complementary.

Prior research and media attention have predominantly focused
on the risks posed by behavioral feedbacks that would lead to a posi-
tive CAF, such as increased demand for air conditioning raising emis-
sions from the electricity sector4,11,17,23. While this specific channel will
undoubtedly play an important role, Fig. 1 illustrates that both the sign
and magnitude of the CAF stemming from all forms of energy-based
adaptation to climate change are unclear. While climate change will
lead to warming of daily temperatures in all locations (Fig. 1a, b), the
resulting response in energy consumption will be highly hetero-
geneous. A higher frequency of realized hot days will increase elec-
tricity demanded for cooling services in locations that are already
warm (Fig. 1d), but warming will simultaneously lower demand for
heating in locations that currently experience a large number of cold
days (Fig. 1c). This heterogeneity interacts with variation in the CO2

intensities of electricity and other sources of energy, leading to sub-
stantial differences in the response of emissions from adaptation to
temperature change across countries.

For example, Canada and Sweden will both likely experience
declines in heating demand under climate change. However, Canada’s
electricity sector emits 15 times more carbon dioxide per Gigajoule
(CO2 ×GJ−1) than does Sweden’s, while its other fuels sector emits 2
timesmore. These differences lead to differential emissions responses
to changing daily temperatures (Fig. 1e). Similarly, energy-based
adaptation in India and Brazil will lead to increased demand for elec-
tricity due to more energy being required for refrigeration and indoor
temperature control, but the dominance of coal in India implies much
larger increases in emissions than in Brazil, where hydropower is the
primary source of electricity (Fig. 1f). Thus, the change in future global
CO2 emissions due to energy-based adaptation, and by extension the
sign and magnitude of the CAF, are a priori unknown. A positive CAF
implies behavioral adaptations increase global CO2 emissions on net
(Fig. 1g), raising projected rates ofwarming (Fig. 1h). However, if future
declines in emissions due to reduced demand for heat fromother fuels
dominate the additional future emissions due to higher electricity
demand, the CAF will be negative.

Wedevelopa framework to sign andquantify thenet effects of the
forces illustrated in Fig. 1. Specifically, we define the CAF in any given
year as the difference in global mean surface temperature between a

baseline value (e.g., projected warming under the Representative
Concentration Pathway 8.5 (RCP8.5) emissions trajectory) and one
accounting for future energy-based adaptation (e.g., projected
warming under RCP8.5 plus the net change in emissions from adap-
tation) (see “Methods”). We note that while energy demand responses
to warming in specific sectors and by specific energy sources will be
heterogeneous, as illustrated in Fig. 1, the sign and magnitude of the
CAF depend only on the net change in resulting emissions across all
sectors and sources. Therefore, we focus our analysis on the aggregate
emissions changes resulting from all measurable energy-based
adaptations.

We implement this framework by leveraging high-resolution
projections of future energy changes in response to local temperature
realizations from ref. 8. These causal “dose-response” functions
represent the change in the use of final energy sources—electricity and
all other fuels—in response to variations in daily temperature, pooling
energy consumption across residential, commercial, industrial, and
agricultural end-uses (excluding transportation). Any adaptive actions
taken by individuals,firms, or public agencies across a broad spectrum
of sectors, such as the use of air conditioning or space heating, are
included in these estimates. The estimated dose-response functions
vary across space and time, accounting for the fact that average
incomes and baseline climates shape the sensitivity of energy use to
temperature changes, for example through changing the adoption and
efficiency of energy-intensive technologies. Accounting for such
extensive margin adjustments in the energy sector has been shown to
have first-order impacts on projected impacts of climate change on
energy demand4,9,15,23. To account for uncertainty, we report estimates
from multiple socioeconomic and emissions scenarios, while
accounting for both statistical and climatological uncertainty (see
“Methods”).

We combine these projections with country-level CO2 emissions
intensity factors for each final energy source constructed using data
from the International Energy Agency’s Emissions Intensities Report
(see “Methods”). These granular data are critical for translating adap-
tive energy use into a global CAF, as the CO2 intensity of energy use
varies substantially across fuels and locations, as shown in Fig. 2a, b.
When combined with projections of energy consumption from ref. 8,
these factors allow us to predict future changes in global CO2 attri-
butable to energy-based adaptation (see “Methods”). As our forecasts
for future energy consumption take an underlying emissions (RCP)
and socioeconomic (Shared Socioeconomic Pathway; SSP) scenario as
given, we fix emissions factors inour projection at historical 2010-2018
levels. While this assumption is restrictive, it avoids the inconsistency
that would result from changing emissions factors while maintaining
an SSP-RCP that fixes baseline emissions. We discuss and evaluate the
potential implications of this assumption for our estimates of the
CAF below.

To obtain the CAF, we calculate the annual cumulative change in
global CO2 emissions due to energy-based adaptation for horizons
from 2020 to 2099 (Fig. 2c). We then translate these cumulative
emissions into a change in global temperatures (ΔGMST) using an
empirically-derived relationship that leverages simulated warming
from an ensemble of Global Climate Models for the two emissions
pathways we consider (Fig. 2d; Methods). This method contrasts with
other approaches (cf. ref. 17) in that we abstain from integrating the
energy demand responses from ref. 8 into an IAM, where adaptation
through energy use is an endogenous outcome when agents solve a
fully-specified optimization problem. This allows us to be neutral on
how future policymay affect adaptive energy use and instead calculate
the CAF as a function of future adaptation solely based on historical
empirical estimates of the effects of temperature variation on energy
consumption.

In this work, we estimate that the CAF is negative at all horizons
and decreasing monotonically over time. This feedback breaks the
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conventional separation between mitigation (actions that reduce
emissions) and adaptation (protective efforts), with important impli-
cations for both climate policy and research. For example, global cli-
mate models estimate climate responses to exogenous radiative
forcing, but omit behavioral responses. A non-zero CAF implies asso-
ciated global and local temperature projections are inaccurate,

affecting downstream climate damage estimates and key policy
metrics like the social cost of carbon24,25. Additionally, the CAF has
equity implications. The possibility of a positive CAF has raised con-
cerns that adaptation could exacerbate climate change inequities,
since the indoor temperature control that is more accessible at higher
incomes4,22may accelerate climate change damages borne by those for
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Fig. 1 | The ambiguous effects of energy-based adaptation on global carbon
dioxide (CO2) emissions and global mean surface temperature. The Climate
Adaptation Feedback (CAF) is the net effect of adaptation-induced energy use on
global mean surface temperatures (GMST); its sign is theoretically ambiguous.
Climate change generates a rightward shift across heterogeneous baseline climate
distributions for (a) colder and (b) warmer locations. This leads to (c) declines in
energy consumption in cold locations and (d) increases in energy consumption in
hot locations. Country-specific emissions intensities of electricity and other fuels
result in different impacts of changing energy consumption on CO2 emissions in

(e) cold locations and (f) hot locations. g Increases in emissions from elevated
cooling demand on hot days balance against decreases in emissions fromdeclining
heating demand on cold days, making the net effect on global CO2 emissions
ambiguous. h When increased emissions from cooling outweigh decreased emis-
sions from heating, a positive CAF increases GMST compared to a baseline rate of
warming; when the opposite is true and emissions reductions from decreased
heating demand outweigh increased emissions from cooling, the CAF is negative.
Only with no energy-based adaptation is there no feedback on GMST.
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whom indoor temperature control is unaffordable26–29. Our approach,
inclusive of statistical and climatological uncertainty, suggests that a
modest positive CAF is unlikely, alleviating such concerns. Finally, a
non-zero CAF has ramifications for integrated assessment models.
While these models increasingly account for geophysical feedbacks
and nonlinearities30 as well as behavioral margins17,31–33, it remains dif-
ficult for existing IAMs to directlymodel how local changes in adaptive
energy consumption alter global temperatures.

Results
Empirical estimation of the global climate adaptation feedback
We find a negative global CAF that declines over time, moderating
rates of warming under future anthropogenic climate change. Fig. 3a
plots point estimates (solid green line) and 90% confidence intervals
(shaded green area) for the annual CAF over the 2020–2099 horizon
under our baseline SSP2-RCP8.5 scenario. In 2099, under RCP8.5 the
CAF is −0.12 °C; changes in energy consumption driven by adaptation
lead to a 0.12 °C lower GMST relative to baseline. Under RCP4.5, our
more moderate scenario for emissions and projected warming, the
magnitude of the CAF in 2099 falls to −0.07 °C. This projected
reduction in warming in 2099 under RCP8.5 alone is equivalent to six
years of recent warming at the observed 0.018 °C × yr−1 rate between
1981–201934 and is 25 times larger than that implied by a back-of-the-
envelope calculation in ref. 8. Under the SSP2-RCP8.5 scenario, our
estimated CAF implies that adaptive energy consumption is predicted
to lower the change inGMST in 2099 from4.27 °C to 4.15 °C, relative to
the pre-industrial climate. Using the Data-driven Spatial Climate

Impact Model (DSCIM) built by the Climate Impact Lab, we estimate
that the decrease in warming due to the CAF lowers the present value
of cumulative damages from climate change between 2020 and 2099
by 1.8 trillion ($2019 USD) (see “Methods”). The analog in avoided
damages is 0.6 trillion for the RCP4.5 scenario. Accounting for both
climatological and statistical uncertainty in 2099 yields a 90% con-
fidence interval for the CAF of −0.35 to 0.073 °C, and the CAF is robust
to iteratively leaving out the adaptation of individual countries when
forecasting cumulative emissions reductions in 2099 (Supplemen-
tary Note 5).

A limitation of our benchmark approach is that it implicitly
assumes the effects of adaptive emissions on the GMST pathway do
not themselves affect future adaptation. Paths for future changes in
energy consumption are fixed in the sense that the demand responses
generated by temperature trajectories under each SSP-RCP are
determined before we calculate the CAF at a given horizon. We relax
this assumption to construct a dynamic version of the CAF, which
allows for historical adaptation to affect our projections for adaptive
energy use from that point forward (see “Methods”). Allowing for such
dynamic linkages leads to a negligible difference, as shown by the
dashed green line in Fig. 3a; the two CAFs are indistinguishable given
the degree of statistical uncertainty. Our point estimates imply that
accounting for dynamic adaptation effects decreases themagnitude of
the CAF in 2099 by 0.8%.

We also recalculate the CAF relaxing the assumption of fixed
emissions factors. The long dashed lime green line in Fig. 3a shows the
CAF under the assumption that historical global trends in emissions
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Fig. 2 | Constructing the Climate Adaptation Feedback (CAF). The CAF is con-
structed by combining high-resolution projections of climate change impacts on
energy consumption from ref. 8 with the following emissions factors: (a) country-
level carbondioxide (CO2) intensities fromagigajoule (GJ) of electricity use (in tons
tCO2 ×GJ−1); and (b) country-level CO2 intensities for all other fuels combined
(tCO2 ×GJ−1). Maps (produced using Stata software with the spmap package using
GADM shapefiles73) show country-level average factor values over the 2010–2018
period. Together, these data allow us to in (c) compute the mean value (solid line)
and 90 percent confidence intervals (shaded region) of cumulative adaptation-

induced CO2 emission changes (in gigatonnes of CO2) for 2020–2099 under our
baseline scenario, which pairs Shared Socioeconomic Pathway 2 (SSP2) with
Representative Concentration Pathway 8.5 (RCP8.5). Finally, we estimate (d) the
relationship between projected GMST change (in °C) and cumulative CO2 emis-
sions across RCPs and global climate models over 2020–2099 (see “Methods”).
This plot shows a fitted linear model (solid line) with 90% confidence intervals
(shaded area) and point estimate and p-value of the linear coefficient, as well as a
local polynomial fit (dashed line) using an Epanechnikov kernel with a rule-of-
thumb bandwidth71 (N = 5200).
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intensity for both fuels between 2000 and 2018 continue for all
countries through 2099, an assumption taken in prior related work on
global climate damages35,36. Allowing each sector to continue to dec-
arbonize at historical rates lowers the CAF to −0.13 °C under SSP2-
RCP8.5. As emissions from other fuels have remained relatively
unchangedon aunit basiswhen compared to the substantial reduction
in the emissions intensity of electricity generation over the past two
decades, extrapolation of this trend lowers emissions from the elec-
tricity sector and amplifies the mechanisms leading to a negative CAF
(Supplementary Note 3).

Decomposition of the global climate adaptation feedback
Figure 3b illustrates how several factors contribute to the sign and
magnitude of the benchmark CAF reported by the first bar. First,
adaptation-induced changes in electricity consumption, which are
largely driven by increased demand for cooling under rising
temperatures4,8,37, lead to a positive value of 0.06 °C (second bar).
This electricity effect has been the focus of prior discussions of
energy-based adaptation11,23. However, a negative CAF emerges when
we add changes in demand for other fuels, whose value of −0.18 °C

(third bar) more than offsets the positive component from elec-
tricity, due to substantial projected declines in demand for heating
under climate change. These findings highlight the importance of
accounting for all forms of energy demand that will change in
response to climate change. Moreover, they reinforce results in the
previous literature demonstrating that energy demand responses to
climate change differ in sign and magnitude across distinct sectors
and fuel sources15.

Heterogeneity in CO2 emissions intensity also plays an important
role. Using a constant global CO2 emissions intensity—a simple average
across countries and fuels (fourth bar)—results in a CAF that is 37%
smaller in magnitude than our benchmark estimate, which allows CO2

emissions intensities to vary across countries and fuels. This result
implies that emissions are higher per unit of energy in countries with
larger energy-based adaptive responses to climate change. Our esti-
mates of the CAF are largely invariant across socioeconomic scenarios,
but depend heavily on the magnitude of baseline greenhouse gas
emissions. Fig. 3c shows point estimates for the 2099 CAF under
alternative SSP-RCP scenarios, demonstrating that the CAF under
RCP8.5 is roughly double that under RCP4.5, due to greater baseline
warming leading to larger energy savings from fewer cold days.
Although SSP scenarios change total population and levels of income
across countries, which can shape the total energy response to daily
temperatures8, we find that within an RCP, global CAF values differ little
across SSP scenarios. This is due to the fact that amajority of variation in
projected income and population levels across SSPs38 occurs outside of
countries with high historical emissions, which as we show below
comprise the primary source of adaptive behavior driving the CAF.

Country-level heterogeneity
There is substantial heterogeneity in the magnitude of adaptation-
induced CO2 emission changes across countries. Fig. 4a shows both a
map and histogram of country-level cumulative adaptation-induced
CO2 emissions changes by 2099 under SSP2-RCP8.5 (denoted as E2099

in the “Methods” section). While 85% of countries experience CO2

emissions reductions, of those countries, the 5th and 95th percentiles
of cumulative adaptation-induced emission changes by 2099 are
−0.027 and -6.24 GtCO2, respectively. For the remaining 15% of coun-
tries that experience increases inemissions,magnitudes are small, with
the 5th and 95th percentile range estimated at 0.0024 to 0.5 GtCO2.
These net changes in emissions can be decomposed into country-level
changes in emissions from electricity, which are positive in most
countries (Supplementary Fig. 1), and in emissions from other fuels,
which are negative in virtually all countries (Supplementary Fig. 2). The
case of India is particularly striking, as it exhibits large adaptation-
induced declines in CO2 emissions by end-of-century, despite facing
substantial increases in exposure to extremeheat in future years39. This
result is driven partially by the demand responses from ref. 8, which
estimate that electricity demand will increase by 4.1 Exajoules (EJs) by
2099, while cumulative demand for other energy will fall by 7.0 EJs,
due to electricity-temperature demand responses being relatively flat
for much of the world. This result is also influenced by heterogeneous
emissions intensities: other fuels in India are substantially more
emissions-intensive, implying that demand responses translate into an
increase of only 0.9 GTCO2 emissions from electricity compared to a
decline of 2.7 GTCO2 from other fuels. This decomposition is detailed
in Supplementary Note 4.

Implications for mitigation policy
Heterogeneity in country-level adaptation-induced CO2 emissions can
inform the fairness and stringency of countries’Nationally Determined
Contributions (NDC) from the Paris Agreement of the United Nations
Framework Convention on Climate Change (UNFCCC). One inter-
pretation of reduced CO2 emissions from energy-based adaptation is
the accrual of “free” abatement. Unlike typical CO2 abatement, which

Fig. 3 | The Climate Adaptation Feedback. a Solid green line and shaded green
area show point estimates and 90% confidence intervals for the mean value of the
Climate Adaptation Feedback (CAF) in °C for 2020-2099 under Shared Socio-
economic Pathway 2 paired with Representative Concentration Pathway 8.5 (SSP2-
RCP8.5) using our benchmark approach. The darker dashed line shows the dynamic
CAF,which accounts for how additional climate change fromadaptation feedsback
into future adaptation (see “Methods”). The lighter dashed line shows the CAF
recalculated using emissions factors that follow historical trends between 2000
and 2018, as detailed in Supplementary Note 3. b Components of the benchmark
CAF in 2099 under our baseline SSP2-RCP8.5 scenario. The first bar is the full CAF
(consistent with panel (a) for 2099). The second bar shows the CAF component
derived from electricity consumption alone. The third bar shows the CAF compo-
nent derived from only other fuels consumption. The fourth bar shows the CAF
component derived using a globally constant CO2 emissions intensity, ignoring
heterogeneity both across space and across fuels in emissions intensity of energy-
based adaptation. c The last set of bar graphs show point estimates for the CAF in
2099 under different combinations of SSPs and RCPs.
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results from climate mitigation policies designed to directly curtail
emissions, this abatement emerges solely as a consequence of beha-
vioral adjustments unprompted by mitigation policies. However, the
resulting emissions reductions from these adaptations have global
benefits identical to those induced by environmental policy and can
influence international negotiations and country-level mitigation
benchmarks. The magnitude and distribution of this free abatement
has two important features relevant for global climate policy.

First, Fig. 4b shows that for the 121 countries projected to
experience adaptation-induced CO2 declines, the magnitude of
cumulative abatement by 2099 is strongly correlated with historical
emissions. For example, while Eritrea is responsible for less than 0.03

billion tons of CO2 emissions cumulatively since 1970, we project that
it will accrue only 0.14 billion tons of free abatement in the coming
century. In contrast, the United States is responsible for more histor-
ical emissions than any other nation on earth, but is projected to
benefit from over 10 billion tons of adaptation-induced abatement
without any mitigation policy. This correlation implies that while the
countries responsible for most greenhouse gas emissions to date are
often targeted for aggressive mitigation in international climate
negotiations40, they are projected to receive substantially more free
CO2 abatement during the 21st century, relative to today’s developing
economies. To ensure equity principles are fairly upheld in climate
negotiations, these findings suggest that historically large emitters

Fig. 4 | International heterogeneity in adaptation-induced cumulative CO2

emissions. a The map (produced using Stata software with the spmap package
using GADM shapefiles73) and histogram display country-level cumulative
adaptation-induced CO2 emissions in 2099measured in gigatons of carbondioxide
(GtCO2) calculated using Eq. (3). b The plot shows a country-level scatter plot of
natural log cumulative adaptation-induced CO2 emissions reductions by 2099 (y-
axis) against natural log of present-day CO2 emissions (x-axis; emissions averaged
between 2015 and 2019). The plot also shows the linear model fit (solid line) with
90% confidence interval (shaded area) and point estimate and p-value of the linear
coefficient. It also shows a local polynomial fit (dashed line) using an Epanechnikov

kernel with a rule-of-thumb bandwidth71 (N = 121). c Histogram shows the dis-
tribution of the country-level ratio of cumulative adaptation-induced CO2 emis-
sions reductions by 2050 to cumulative CO2 emissions reduction commitments
underNationallyDeterminedContributions (NDC) taken from ref. 43. A value of 0.5
implies that 50% of NDC commitments are projected to be met by energy-based
adaptation alone. a, b show results for the scenario of Shared Socioeconomic
Pathway 2 paired with Representative Concentration Pathway 8.5 (SSP2-RCP8.5),
while panel c shows projected abatement for 63 countries under SSP5-RCP8.5 for
consistency with ref. 43.
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should increase the stringency of their mitigation targets to appro-
priately account for the CAF.

Second, we find that the magnitude of adaptation-induced
abatement is large relative to existing mitigation targets. To illustrate
this, we report each country’s cumulative adaptation-induced abate-
ment in 2050 as a fraction of that country’s cumulative required
abatement in 2050 under its NDC41–43. When this ratio takes a value of
one, the entirety of a country’s obligations under its NDC will be met
without any mitigation policy; that is, the projected gap between a
country’s baseline emissions and its NDC is met entirely by our esti-
mate of adaptation-induced abatement. Fig. 4c shows a histogram of
these values, displaying the share of mitigation stipulated under each
country’s NDC that is realized through adaptation-induced abatement
for each of the 63 countries with long-term commitments cataloged by
ref. 43. Similar to the the full sample, 82% of the countries in this
subsample are projected to experience adaptation-induced abate-
ment. For these 52 countries, adaptation-induced abatement will on
average reduce gaps between baseline emissions and their NDCs by
20% in 2050. Several countries are projected to undergo emissions
reductions from adaptation that are larger than the mitigation com-
mitments implied by their NDCs, as shown by share values that exceed
1. This highlights that NDC commitments, which already have been
shown to be insufficient to meet the Paris Agreement goal of no more
than 2 °C increase in global average temperatures relative to pre-
industrial44, are even weaker than previously assessed: once the CAF is
accounted for, many countries need to undertake little mitigation
policy to achieve their targets.

Discussion
We develop a framework for quantifying the feedback between
energy-based adaptation and anthropogenic climate change, a phe-
nomenon we call the Climate Adaptation Feedback. Our methodology
combines high-resolution projections of future energy consumption
responses to climate change with country- and energy-specific CO2

intensities to quantify cumulative emissions changes due to adapta-
tion. Under several benchmark pathways for future emissions and
socioeconomic development, we consistently find a negative CAF –

i.e., that declines in energy use from adapting to fewer days with cold
temperatures more than offset increases in energy use from adapting
towarmer temperatures. This result is driven in part by thefinding that
much of the global population is projected to face income constraints
that prevent substantial increases in energy demand in response to
rising temperatures8.Our central estimate implies that adaptive energy
use attenuates warming by 0.12 °C in 2099, roughly equivalent to six
years of warming at recent rates. This moderation of GMST change
between 2020 and 2099 avoids 1.8 trillion in damages (in $2019 USD)
in present value terms, an amount equivalent to roughly 2 percent of
2019 global output. When accounting for statistical and climatological
uncertainty, our results suggest it is unlikely that the CAF is positive
and large in magnitude, limiting concerns that energy-based adapta-
tion will exacerbate future warming.

Our data-driven approach combined with the updated esti-
mates of energy demand responses we use from ref. 8 leads our
findings to contradict several existing estimates in the literature,
drawn from both reduced-form and computational general equili-
brium methods. Prior work projecting energy demand under SSP-
RCP scenarios using alternative demand response estimates pro-
jects that, in contrast with ref. 8, aggregate energy demand will rise
due to adaptation to climate change15,20. The other contemporary
paper that considers how adaptation affects the trajectory of cli-
mate change uses an IAM to do so and, contrary to our study, finds a
positive climate feedback from adaptation: ref. 17 estimate that
adaptation increases cumulative emissions in 2099 by approxi-
mately 347 GtCO2-equivalents, which in our framework corresponds
to a CAF of approximately +0.17 °C.

There are numerous differences between prior studies and ours
that may contribute to such divergent results (see “Methods”). First,
our projections of the energy demand response to climate change
stem from ref. 8’s approximately 25,000 heterogeneous empirically-
derived fuel-specific energy demand responses representing subna-
tional units across the globe. These estimates include demand
responses to the full distribution of daily temperature realizations,
comprising both moderate and extreme temperatures. In contrast,
refs. 20 and 17 use earlier empirical estimates from ref. 15, who
estimate two regional fuel-specific demand responses to the annual
frequency of average daily low (<12.5 °C) and high (>27.5 °C) tem-
perature extremes. Second, while we directly estimate how climate
change affects final energy demand using historically observed
behavior, ref. 17 model adaptation as the response of global energy
demand to temperature-driven changes in the productivity level of
energy inputs in economic production. The energy demand induced
by adaptation is then computed as the difference in aggregate
energy use between the model where climate change affects pro-
ductivity levels and an alternative specification where fuel-specific
productivity levels are temperature-invariant. Third, we account for
country-level heterogeneity in emissions intensities, as opposed to
heterogeneity across only 17 global macro-regions17. In sum, while
ref. 17 compute the CAF associated with energy productivity shocks
from climate change under conditions in which regional planners
balance the benefits and costs of responding to climate change, our
data-driven approach estimates the CAF for a future where agents
adapt to climate change in line with historical behavior. While many
data inputs also differ, these distinct methodologies render the two
approaches highly complementary.

Our analysis has several limitations. First, we define the CAF
relative to a fixed SSP for socioeconomic conditions and fixed RCP for
baseline global emissions. The advantage of this approach is that SSPs
and RCPs are widely used in climate projections and do not already
account for emissions arising from energy-based adaptation45. The
disadvantage is that we cannot readily map the narrative-driven
assumptions surrounding global emissions and energy use implied by
each SSP-RCP combination into our framework. This leads to an
inconsistency between our use of fixed or exponentially-declining
emissions factors across all SSP-RCP combinations and the variation in
the implied carbon intensity of output induced by the aggregate time
series specific to each scenario. However, the baseline coupled SSP-
RCP scenarios do not contain sufficient information for us to extract
the fuel- and country-specific emissions factors that we would need in
order to map the implied variation in decarbonization pathways onto
our projections of energy demand. We instead assume that emissions
factors stay atmeasured levels or fall according to current empirically-
estimated exponential trends, as these measurements directly reflect
the current state of the world and allow us to minimize the normative
assumptions we make regarding decarbonization.

While completely remedying this inconsistency would require a
fully coupled approach in which behavioral adaptations are built
directly into the modeling forming the SSP-RCP scenarios, our key
qualitative findings are unlikely to be affected by such a change for
two reasons. First, we conduct a sensitivity analysis that captures
one dimension of such a coupling; our dynamic version of the CAF
shown in Fig. 3 recalculates the energy demand projections from
ref. 8 to account for the endogenous response of temperature to
prior years’ energy demand induced by the CAF itself. Results are
virtually unchanged. Second, as long as CO2 intensities associated
with non-electricity energy use do not decline dramatically relative
to those for electricity, our estimate should serve as an upper bound
on the magnitude of the CAF when general equilibrium effects are
small. For example, if the electricity sector continues to decarbonize
faster than other fuels46, there will be fewer additional emissions
from increased electricity consumption to offset the decreased
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emissions from other fuels, implying a more negative CAF than the
value we have estimated here. Finally, because adaptation lowers
the global net demand for energy services across all fuel sources,
our estimate of the CAF would be negative even if all energy services
required to meet future adaptive demand were provided by
electricity.

Second, relying on a fixed SSP-RCP baseline further omits other
general equilibrium channels associated with energy-based climate
adaptation. For example, recent integrated assessment models of
climate change illustrate the importance of price effects from
energy-based adaptation in altering the social cost of carbon17,20.
While some state-of-the-art, multi-region macroeconomic models
do incorporate some heterogeneity in demand for energy across
space17,36,47, these models do not yet capture how adaptation may
directly alter how energy enters final consumption worldwide.
Incorporating both behavioral responses to climate change through
energy use and allowing for these changes to affect prices, expec-
tations, and investment will be essential moving forward in estab-
lishing a unified modeling framework whereby socioeconomic
conditions and emissions pathways interact dynamically.

Third, our analysis is somewhat limited in its coverage of
energy-based adaptations. We omit possible feedbacks arising from
transportation-based adaptation due to a paucity of empirical esti-
mates for how transportation-related GHG emissions respond to a
warming climate (e.g., ref. 48 provide such estimates, but only for
the United States). Our estimates may also fail to account for long-
run changes in the response of energy demand driven by shifts in
preferences or technological change, leading us to not fully capture
some facets of the extensive margin for adaptation9,16,23. If the price
of electricity falls drastically in the future relative to that of other
energy, we may underestimate electricity demand responses which
would bias our CAF estimate downward. Conversely, if end-uses for
electricity becomemore efficient in a way previously unexplained by
income growth, our CAF will overstate future emissions from elec-
tricity. More generally, our estimates of the CAF will not capture
future energy demand responses to climate change driven by factors
that are not captured by the two-factor model in ref. 8. This omits
the potential for government policy or technological breakthroughs
to cause structural shifts in how energy use responds to temperature
changes. Additionally, our calculation includes all direct energy
consumption responses to daily variations in temperature, but
omits any indirect effects on energy demand that may arise under
climate change. For example, declining agricultural yields due to
climate change may induce more fertilizer use, which could alter
GHG emissions from the agriculture sector even if it uses the same
level of direct energy inputs49,50. Such indirect channels of energy-
based adaptation have, to our knowledge, not been systematically
quantified globally. When these adaptive behaviors are better
characterized in the scientific literature, they too may be incorpo-
rated into the CAF using the framework developed here.

Even within the non-transportation energy sector, we face two
primary data limitations. First, our measure of CO2 emissions intensity
corresponds to a country’s average emissions intensity, whereas a
more appropriate measure would be the CO2 intensities of marginal
energy sources that will experience increasing (or decreasing) demand
due to variation in local temperatures. Unfortunately, the data for
calculating marginal CO2 intensities for every country is not readily
available, nor is it clear whether the average CO2 intensities we use
systematically under- or overstate true marginal intensities. Second,
the absence of non-CO2 GHG emissions intensities prevent us from
directly quantifying corresponding changes in non-CO2 emissions due
to adaptation. While our empirical estimate of the relationship
between GMST changes and global cumulative CO2 emissions impli-
citly includes non-CO2 GHG emissions (see Fig. 2d and Methods), our
analysis does not capture any geographical heterogeneity in the

covariance of these emissions and CO2. For example, because phase-
out rates of hydrofluorocarbons (HFCs) vary by country under the
Kigali Amendments to the Montreal Protocol, some countries may see
decreased CO2 emissions from air conditioning coincide with declines
in HFC emissions larger than those captured in our estimated global
temperature response relationship. Lastly, by definition, the CAF only
quantifies the GMST consequences due to GHG emissions caused by
energy-based adaptation. In practice, fossil energy consumption for
heating and cooling leads to additional local ambient air pollution
from power plants and the direct combustion of fossil fuels (e.g.,
natural gas furnaces). In the case of electricity generation, those local
ambient air pollutants (e.g., PM2.5, SO2, and NOx) have been shown to
have large effects on human health outcomes51–53. Therefore, the
declines in energy consumption due to adaptation that we study here
may lead to additional local environmental benefits not considered in
this analysis.

Our finding that energy-based adaptation may lower global CO2

emissions has implications for countries’ existing mitigation commit-
ments. Projections of “business-as-usual” CO2 emissions that fail to
account for declining energy use on net due to adaptive behaviors
(that occur regardless of policy changes) may lead to an inaccurate
measure of policy stringency. As we show by comparing cumulative
adaptation-induced CO2 abatement with mitigation commitments
under existingNDCs, energy-based adaptation alonemay account for a
substantial share of NDC abatement for many countries. For a more
accurate measure of climate policy stringency, measures of business-
as-usual or baseline emissions must incorporate GHG emissions
changes due to adaptive behaviors.

More broadly, a non-zero CAF highlights the inherent link
between climate mitigation and adaptation that is beginning to be
employed in policy and research23. Advocates and policymakers have
long argued that mitigation and adaptation should be considered
separately, in part to isolate the objectives within each domain. With
a non-zero CAF, those objectives are inherently linked; mitigation
goals must take into account the consequences of adaptive behavior,
and climate adaptation must be viewed as an additional channel for
mitigation. Our results further emphasize the importance of inter-
disciplinary research quantifying the future effects of climate
change. With both Earth System Models and Integrated Assessment
Models increasing in complexity, coupling projections of the climate
system with the dynamic responses of human behavior is critical in
order to appropriately inform each class of models. Our finding
suggests that adjusting existing models to allow for this interaction
will play an important role in forming more accurate projections and
prescriptions of the human response to anthropogenic climate
change going forward.

Methods
Constructing the climate adaptation feedback
Our paper develops and implements a methodology to quantify the
extent to which changes in future energy use driven by adaptation to
anthropogenic climate change (ACC) will alter greenhouse gas
(GHG) emissions and in turn affect climate change. We call the dif-
ference between global mean surface temperature (GMST) with
versus without adaptation-induced energy consumption at time
horizon τ the “Climate Adaptation Feedback”, or CAFτ. CAFτ depends
on the baseline scenario of emissions and socioeconomic condi-
tions, defined for our purposes as a combination of a Representative
Concentration Pathway (RCP) of global anthropogenic GHG
emissions54–58 and a Shared Socioeconomic Pathway (SSP) of pro-
jected national populations, incomes, and other socioeconomic
characteristics59–61. The following calculations fix our baseline SSP2-
RCP8.5 scenario to avoid notational clutter, but we repeat the pro-
cesses below for each SSP-RCP we consider (results for all scenarios
are displayed in Fig. 3).
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Consider two projections of future warming, one that accounts
for adaptive changes in energy use and one that does not. Denote
projected GMST in period t as T

A
t when adaptive energy use is

accounted for, and as T
N
t when it is not. Normalize time periods such

that t =0 is the year 2020 and letΔdenote the timedifference operator
between period t = 0 and t = τ. With this notation, we define the CAF at
horizon τ as Eq. (1):

CAFτ =
def

ΔT
A
τ � ΔT

N
τ :

ð1Þ

Equation (1) is the difference in GMST change at horizon τ due to
adaptive changes in energy use around the world. When the CAF is
positive, adaptation exacerbates warming globally. When the CAF is
negative, adaptation dampens warming.

To construct CAFτ, we first calculate the change in global CO2

emissions due to adaptation-induced energy use in each period
through horizon τ. At the local scale, emissions from adaptive energy
use depend on how ACC changes local temperature distributions as
well as how different temperature realizations affect energy demand
(see Fig. 1). Because local temperature changes, energy use responses,
and the CO2 intensity of energy consumption vary substantially across
space, we conduct this step at the country level before aggregating
globally to compute the global CAF. Specifically, for each year t and
country i, the CO2 emissions generated by energy-based adaptation
are given by Eq. (2):

Ei, t =
X
h

Fh
i ΔJ

h
i, t =

X
h

Fh
i

X
p2i

½JhðTN
p, t ,Xp, tÞ � JhðTN

p, 0,Xp, tÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Change in energy usedue to

adaptation to temperature change

ð2Þ

where h indicates final consumption of either electricity or an aggre-
gate of consumption across all other fuels, including natural gas, oil
shale andoil sands, biofuels, andothers, as detailed in ref. 8, the source
of our energy use projections. In this expression, p indicates one of
~ 25,000 global subnational regions with approximately internally-
homogeneous historical temperatures, which are shown as Eq. (2)
defined by ref. 8. Each Fh

i is the CO2 emissions factor for a given energy
type h ∈ {electricity, other fuels} for country i, measured in units of in
tCO2 ×GJ−1 of fuel consumed. Construction of Fh

i is detailed below. We
fix Fh

i to the observed 2010-2018 averages for each country-fuel pair to
avoid projecting future changes in CO2 intensities while reflecting
current differences in countries’ energy mixes.

Theunderbracedobject in Eq. (2) represents the impactof climate
changeon adaptation-induced total energy use in regionp. It is defined
as the difference in total energy use in GJ between a future climate
affected by ACC and a future with stable temperatures representative
of the current (t = 0) climate. This projected change in energy con-
sumption depends critically on the “dose-response” functions Jh(⋅),
which are constructed by ref. 8 using historical energy consumption
data and standard climate econometric tools. These functions relate
energy consumption in each fuel category h to daily temperature,
capturing the energy consumption that results from all behaviors and
investments that individuals and firms undertake in response to local
temperature variation across all sectors besides transportation.

As detailed in ref. 8, these energy demand response functions
dependprimarily on the realization of future daily temperatureswithin
a given impact region, denoted by the vector TN

p, t , under a given RCP
scenario. The dose-response functions also include higher-order terms
of daily grid cell-level temperature realization along with a set of
covariates summarized by Xp,t, which include projections of GDP per
capita and population specific to a SSP scenario and long-run averages
of cooling andheating degree days under each temperature trajectory.
These covariates allow for the response of energy consumption to
daily temperature realizations to vary based on how the economic
resources and climatology of a given location change in the future.

This ensures the CAF calculation captures the extensive margin of
adaptation that takes place over long periods and may be especially
important in developing economies, where income growth is likely to
lead to substantial increases in cooling and heating technology
adoption4,8,9. The empirical estimation of such extensive margin
effects is conducted in ref. 8 by interacting short-run variation in
weather with long-run variation in income and climate in a country-by-
year panel regression. This model results in the estimation of hetero-
geneous dose-response functions in which energy demand sensitivity
to daily realizations of temperature differs based on long-run average
income and climate. The econometric procedure employed follows
previously-developed methods (e.g., ref. 62) to recover nonlinear
energy demand responses to temperature at a grid cell-by-day level,
which can be applied to predict climate change impacts at the scale of
~ 25,000 regions, even though more aggregated outcome data were
employed (see Methods of ref. 8 for details). More generally, these
interaction terms allow for the model to identify the heterogeneity in
the response of local energy demand to temperature realizations
caused by variation in income and climate over space and time. We
show the quantitative importance of the extensive margin in shaping
the CAF in Supplementary Note 2.

Two sources of uncertainty enter into Eq. (2). The first is climate
model uncertainty: for a given emissions scenario, there is uncertainty
over future local temperature realizations TN

p, t . We account for this
uncertainty by utilizing all 33 Global ClimateModel (GCM) projections
included in the Surrogate Model Mixture Ensemble (SMME) employed
by ref. 8 and built from the Coupled Model Intercomparison Project
Phase 5 (CMIP5)63 climatemodels. The second is statistical uncertainty
in the empirical estimates of the energy-temperature dose-response
functions Jh(⋅); this uncertainty is captured by ref. 8 through applica-
tion of the statistical Delta Method, creating a Gaussian distribution of
predicted impacts for each of the 33 climate model projections. To
combine both sources of uncertainties, we follow ref. 8 in constructing
the mixture distribution of these 33 Gaussian distributions using
Newton’s method.

There are multiple possible sources of empirically-based energy-
temperature demand responses that we could have used to estimate
Eq. (2). In selecting a source, we sought to identify estimates that: (i)
account for demand responses to changes across the entire tem-
perature distribution, not just extreme temperatures; (ii) are differ-
entiated between electricity and other fuels, allowing for a different
effect of temperature on the demand for both types of energy; (iii)
incorporate extensivemargin responses of energy demand to changes
in temperature over time; and (iv) allow for different localities to have
different responses to temperature change. While other multi-country
energy-temperature demand estimates exist (e.g., ref. 15), to our
knowledge ref. 8 represents the only study meeting all four of these
criteria.

Summing the results from Eq. (2) over time and across space, we
write the cumulative change in global CO2 emissions between years 0
and τ caused by adaptation-induced energy use as Eq. (3):

Eτ =
Xτ
t =0

X
i

Ei, t ð3Þ

To convert cumulative emissions from adaptation, Eτ , to changes in
future GMST, we estimate a relationship between projected future
emissions and warming in the absence of adaptation using the fore-
casts generated by the 33 GCMprojections described above. Belowwe
discuss this relationship in detail, how it relates with the transient
climate response to cumulative carbonemissions (TCRE) in the climate
science literature, and we show that it is well-approximated by a linear
coefficient. We denote this linear relationship between emissions and
GMST with the slope coefficient β. This implies that the GMST change
between years 0 and τ due to adaptation is:ΔTA

τ =ΔT
N
τ +βEτ . Rewriting
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this expression in terms of the climate adaptation feedback definition
in Eq. (1) gives us Eq. (4):

CAFτ =βEτ : ð4Þ

For each SSP-RCP combination, we obtain a point estimate for
CAFτ from Eq. (4), as well as a 90% confidence interval that account for
both climate uncertainty acrossGCMs and statistical uncertainty in the
energy response functions, as discussed above.

Valuation of the climate adaptation feedback
To convert our estimates of the CAF into dollar value of avoided
damages, we use the Climate Impact Lab’s Data-driven Spatial Climate
ImpactModel (DSCIM)29. Thismodel includes climate change damages
to mortality, coastal storms and sea level rise, labor, energy, and
agriculture. Mortality risk is monetized using the U.S. EPA VSL with a
value of life years lost adjustment and an income elasticity of one,
following ref. 29. DSCIMassigns amonetary value to the damages from
global warming in every year along a baseline socioeconomic and cli-
matic trajectory. Avoided damages due to the negative CAF are cal-
culated as the difference between predicted damages in the baseline
scenario and in the scenario inclusive of the CAF, for each year
between 2020 and 2099. When discounting damages, the DSCIM
model generates a stochastic discount factor (SDF) for all future per-
iods based on the Ramsey rule calculated along the exogenous con-
sumption pathway for a given socioeconomic scenario, and after
incorporating consumption losses from baseline warming. Specifi-
cally, we use a coefficient of relative risk aversion equal to η = 2, andwe
discount future values using Ramsey discounting with η = 2 and a pure
rate of time preference of ρ = 0.0001. We convert the avoided con-
sumption losses due to the CAF into a present value in 2019 equiva-
lents using this SDF.

Comparison with the integrated assessment model approach
Unlike prior literature, we do not use an Integrated Assessment
Model (IAM) to estimate the effects of adaptive energy demand on
global temperatures. This abstracts from fully specifying a demand
system wherein agents balance the benefits of using energy for
adaptation against the costs of foregoing income for other forms
of consumption. Our data-driven approach avoids making
structural assumptions governing the channels through which
adaptation to climate change occurs, which an IAM framework
usually imposes. This abstention from using an IAM of course poses
a tradeoff in that our empirically-based CAF omits general equili-
brium channels thatmay affect energy demand, as highlighted in the
Discussion section.

The benchmark study to date examining the potential for feed-
back between energy used for adaptation and global temperatures17

uses the WITCH IAM18 framework. WITCH is a multi-region IAM based
on an augmented Ramseymodel of optimal savings designed to assess
the welfare and temperature effects of climate policy in a dynamic
setting18. Agents in the model consist of regional planners who select
sequences of consumption, savings, and energy use in their local
economy so as to maximize residents’ welfare18. The model allows for
both a non-cooperative formulation, where up to 17 regional planners
maximize the welfare of their populations in a global extensive game,
as well as a cooperative formulation under which a single social plan-
ner maximizes welfare across all regions globally. Reference 17 use the
non-cooperative formulation of the model as their laboratory for
examining the effects of adaptation on energy demand and tempera-
tures. While the non-cooperative formulation is the closest version of
the model to a competitive equilibrium, unlike in a decentralized
economy, regional planners in the non-cooperative formulation still
internalize some climate externalities. These planners choose mitiga-
tion and/or abatement efforts to maximize regional welfare; the Nash

equilibrium in the non-cooperative formulation ofWITCH is a second-
best optimal solution, as opposed to a model of outcomes under
laissez-faire18.

To use the WITCH model to estimate the effects of adaptation
on energy use, ref. 17 modify the model to allow climate change to
affect the productivity of different fuels used as intermediate inputs
for producing the modeled final consumption good. Adaptation
inside of this alternate specification is taken to be how energy use
changes in response to the productivity shocks driven by future
climate change17. The authors then calculate aggregate demand in
the alternative (baseline) model specifications that include
(exclude) the adaptive energy demand induced by the productivity
shocks for three scenarios: no climate policy, a 2.5 °C limit on
warming, and a < 2 °C limit on warming. For each scenario, ref. 17
solve both specifications of the model in the non-cooperative mode
and raise carbon taxes until the resulting Nash equilibrium yields a
level of aggregate emissions that coincides with the policy goal in
the scenario. Reference 17 quantify the additional energy demand
(and in turn, emissions) induced by adaptation as the difference
between aggregate energy demand in the alternative specification
with adaptation and a baseline version of the WITCH model where
adaptation is absent and energy-specific productivity levels are
temperature-invariant.

In contrast, our data-driven approach is agnostic regarding the
underlying structure of the economy, relying instead on empirical
estimates of the historical response of energy demand to temperature
fluctuations. Our methodology trades the structure of an IAM for
increased spatial granularity and a greater ability to account for both
statistical uncertainty in future demand responses as well as model
uncertainty in how future temperature dynamics will respond to
emissions. To do so, we use existing forecasts from ref. 8 that predict
how future climate changewill affect energydemandbasedon realized
historical adaptation to intra-annual temperature changes. This avoids
measuring adaptation as the change in energy used by regional social
planners or assuming that the shifts in demand are driven by pro-
ductivity shocks and/or changes in relative prices. At the same time,
the lack of structure precludes us from accounting for future gov-
ernment policy or voluntary actions that may alter how energy
demand responds to climate changebeyond historical patterns. In that
sense, we sacrifice the ability to estimate what the CAF would be in a
world where global policy governing emissions or carbon prices
change (cf. ref. 17).

Data
We obtain point estimates and 90% confidence intervals for projec-
tions of adaptation-induced energy use (i.e., the underbraced terms in
Eq. (2)) at the country-year-fuel level for two emissions scenarios and
four socioeconomic scenarios directly from ref. 8.

We obtain projection-specific annual series of GMST between
2020 and 2099 under the RCP4.5 and RCP8.5 pathways directly from
ref. 8. The SMMEemployedby ref. 8 generates 33projections of annual
GMST under each RCP scenario. These global averages correspond
directly with the impact-region specific daily temperature realizations
that drive future ΔJhi, t s under each model run in ref. 8.

We obtain five-year country-level GDP per capita and population
projections for the 2020–2099 period under each SSP scenario from
the International Institute for Applied Systems Analysis (IIASA)
model59–61 and from the Organization for Economic Co-operation and
Development (OECD) Env-Growth model. For projections under each
SSP scenario, we take the average between these two model outputs.

To convert adaptation-induced final energy consumption of
energy source h ∈ {electricity, other fuels} to CO2 emissions, we need
energy source-specific CO2 emissions intensities that account for
heterogeneity in the mix of primary fuels (e.g, coal, natural gas, and
renewables) in each country. For example, electricity in Poland is

Article https://doi.org/10.1038/s41467-025-59201-7

Nature Communications |         (2025) 16:3928 10

www.nature.com/naturecommunications


mostly generated using coal, while in Costa Rica it comes almost
exclusively from renewables, each with very different resulting CO2

emissions intensities.
For each country i and year t, let r 2 Hh

i, t index the primary fuels
used to generate final consumption of energy source h. The final
energy source CO2 emissions intensity, Fh

i , is the weighted average of
primary fuel CO2 emissions intensities, f hi, r, t , across primary fuels r
used to produce final energy source h, where each weight, ωh

i, r, t , is the
total amount of energy fuel r contributes to final consumption
of energy type h in year t. To account for year-to-year fluctuations in
primary energy use, we take this average over 2010–2018 values.
Country-level final energy source CO2 emissions intensities are calcu-
lated as Eq. (5):

Fh
i =

P2018
t = 2010

P
r2Hh

i, t
f hi, r, t ω

h
i, r, tP2018

t = 2010

P
r2Hh

i, t
ωh

i, r, t

: ð5Þ

We obtain primary fuel CO2 emissions intensities f hi, r, t from the
International Energy Agency (IEA) Emissions Intensities Report for
each form of final use64. We assign weights, ωh

i, r, t , based on con-
sumption data from the IEA World Energy Balances (WEB)65. The WEB
catalogs country-level primary fuel consumption at the sector level
which we aggregate to form our final energy use sectors. Electricity is
one such sector (i.e., code ELOUTPUT). For other fuels, we follow ref. 8
for consistency and pool together the industrial, residential, commer-
cial and public services, agricultural, fishing, and other sectors not
elsewhere specified (i.e., codes TOTIND, RESIDENT, COMMPUB,
AGRICUL, FISHING, and ONONSPEC respectively).

To construct the globally constant emissions-weighted average
CO2 intensity across final energy sources and countries used in Fig. 3b,
we compute Eq. (6):

F =
Pn

i = 1 E
2019
i

P
hF

h
iPn

i= 1 E
2019
i

ð6Þ

where theweights E2019
i are set equal to 2019GHGemissionsmeasured

in CO2-equivalents from ref. 66.
We obtain country-level baseline CO2 emissions pathways and

Nationally Determined Contributions (NDCs) from ref. 67. Reference 67
provide two sets of NDCs for most countries: a more stringent “condi-
tional" NDC path (in the sense that the pathway is conditioned on action
by other countries) and a “unconditional" NDC path, both available only
under SSP1 and SSP5.We use themore stringent conditional NDCs along
with baseline CO2 emissions projections under the SSP5 scenario, both
for the year 2050, to construct the ratio of cumulative adaptation-
induced CO2 emissions reduction over cumulative CO2 emissions
reduction under NDCs by 2050 in Fig. 4c.

Estimating the GMST-cumulative CO2 relationship
A key challenge to quantifying the CAF is that available emissions
intensity data only apply to CO2 emissions, while energy-based adap-
tation is likely to feed back into climate change via other greenhouse
gases as well. Specifically, the IEA data detailed above does not contain
emissions intensities for non-CO2 greenhouse gas emissions from final
consumption outside of the electricity and heat and power sectors. To
address this data limitation, we construct an empirical relationship
between GMST and cumulative CO2 emissions that includes any
changes in non-CO2 emissions which covary with CO2 emissions. Such
a relationship is similar to, but not the same as, the transient climate
response to cumulative emissions of CO2 (TCRE), which is the direct
(causal) effect of cumulative CO2 emissions on GMST change and has
been documented in the climate science literature and shown to be
well-approximated by a linear relationship12,68–70. However, our
empirical relationship additionally includes the effects of non-CO2

greenhouse gases on GMST, to the extent that these gases correlate
with CO2 emissions in historical data.

To illustrate this approach, suppose the change in GMST over
time horizon τ, ΔTτ , responds to cumulative CO2 emissions, ECO2

τ and
cumulative emissions of another GHG, Eother

τ , as given by Eq. (7):

ΔT τ =ρECO2
τ +αEother

τ ð7Þ

In this expression, ρ is the TCRE—the direct effect of changingCO2

emissions on GMST holding cumulative emissions of all other GHGs
constant. However, due to IEA data limitations, we cannot estimate
projected changes in Eother

τ due to adaptive energy use. Instead, we can
estimate the same regression omitting the effects of other GHG
emissions in Eq. (8):

ΔT τ =βECO2
τ + errorτ ð8Þ

Since future emissions of CO2 and other GHGs are likely to be
positively correlated, β can be expressed as Eq. (9):

β=ρ +α
cov ECO2

τ , Eother
τ

� �
varðECO2

τ Þ
>ρ ð9Þ

The coefficient β is therefore our object of interest; it is the pro-
jected GMST change from an observed increase in cumulative carbon
emissions. This coefficient combines the direct effect of a unit increase
in cumulative CO2 emissions and the indirect effect that accounts for
the covariance between CO2 and the other GHG emissions that are
inputs into the SMME used to forecast future temperature pathways.
When that covariance is positively correlated, one would expect β to
exceed the TCRE, or ρ.

In practice, to estimate β, we use variation in GMST and cumula-
tive CO2 emissions (in the absence of adaptation) across RCP4.5 and
RCP8.5 and the 33 GCM predictions drawn from the SMME based on
CMIP5. Letting s index the 66 RCP-GCM combinations, we estimate Eq.
(10):

ΔT
N
τ, s = βEN

τ, s + errorτ, s ð10Þ

using the temperature and emissions time series generated by the
ensemble of models in CMIP5 (N = 5, 200). Our estimate of β from Eq.
(10) is 2.2 × 10−3 °C ×GTC−1 (p(∣T∣ > ∣t∣) < 0.01). To examine whether our
linearity assumption is valid, Fig. 2d shows a scatter plot betweenΔTN

τ, s
and EN

τ, s along with a flexible relationship estimated using a local
polynomial function with an Epanechnikov kernel and a rule-of-thumb
bandwidth71,72 that reveals any data-driven nonlinearities. We do not
detect any nonlinearities. As a point of comparison, our estimate for β
is 1.4 times the median estimate for the TCRE (or ρ) detected in the
literature, although well within confidence intervals for the TCRE70.
This is consistent with cumulative emissions of CO2 and other GHGs
being positively correlated.

A dynamic climate adaptation feedback
As discussed in the main text, our baseline estimate for the CAF
takes projected changes in emissions from adaptation as given by
the calculations in ref. 8. That is, we assume that the additional
climate change due to the CAF does not itself lead to additional
adaptive energy demand. In doing so, the estimated CAF outlined
above implicitly assumes adaptive changes in emissions have no
concurrent effects on the GMST pathway that determines future
adaptation. This is a strong assumption if emissions changes due
to adaptation have large immediate effects on the GMST path
each year after they enter the atmosphere. In this section, we
develop a dynamic version of the CAF and show that, in practice,
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the result is nearly identical to the approximated value we center in
our analysis.

Specifically, we account for the dynamics of energy-based
adaptation by updating the original projections of Ei,t from Eq. (2) at
each time horizon to account for how historical adaptive emissions
through time t − 1 will have affected the GMST pathway that year.
This is implemented by iteratively updating the temperature path-
way at each horizon relative to a given RCP baseline to account for
temperature change due to the CAF, and then using this distance
from the baseline to adjust projected adaptive energy use from that
point forward. Starting in 2021 (the second projection year from
the8 data we use), we adjust the baseline projected temperature
pathway each year to account for the cumulative effects of emis-
sions from adaptation. We then update each country-year-fuel
emissions tuple in that year to account for the adjusted GMST
pathway. We repeat this procedure out to 2099 and recalculate the
cumulative emissions changes to form an estimate of the CAF that
accounts for concurrent dynamics between adaptation use and
GMST change.

Specifically, we begin with the set of 66 projected time series of
emissions changes computed under our baseline SSP2-
RCP8.5 scenario from Eq. (2). These forecasts are country-level
changes in emissions for each climate model m given by Eq. (11):

Eh
i, t,m = Fh

i

X
p2i

JhðTN
p,m, t ,Xp, tÞ � JhðTN

p,m, 0,Xp, tÞ
h i

ð11Þ

in year t for fuel h in country i under climate model m. We use these
country-level sets of projected horizon-t emissions changes to
estimate, for each country-fuel-year combination, the reduced form
response function in Eq. (12):

Eh
i, t,m =αh

i, tΔGMSTt,m + γhi, tΔGMST2
t,m + εhi, t,m ð12Þ

Equation (12) captures the additional emissions due to adaptation for
each i, t, and h, as a quadratic function of changes in GMST. We esti-
mate Eq. (12) separately for each (i, t, h) tuple under the SSP2-RCP8.5
combination to form a time series of estimated α̂h

i, t and γ̂hi, t coefficients
for each country-fuel combination. From these estimates we construct
time-country-fuel impulse response functions (IRFs): each IRF (for an
i, t, h pair) gives the estimated additional change in emissions from
energy-based adaptation induced by marginal changes in projected
GMST derived from fuel h and country i at the time horizon t.
This object is the derivative of Eq. (12)with respect toΔGMST, shown in
Eq. (13):

bΘh

i, t =
def ∂dEh

i, t

∂ΔGMSTt
= α̂h

i, t +2γ̂
h
i, tΔGMSTt

ð13Þ

These impulse responses give, by fuel-horizon-country, the local
effects on concurrent emissions from adaptive energy use due to
additional warming. We use this to project how prior temperature
changes fromadaptationwill affect contemporary adaptive energy use
relative to the baseline pathway. Starting in 2021, we update the values
of emissions from energy-based adaptation using a first-order Taylor
expansion around their baseline levels. For each country-fuel-year, we
define an updated series of emissions using Eq. (14):

gEh
i, t = �E

h
i, t|{z}

baseline emissions

+ Θ̂
h
i, t|{z}

response functions

× β̂ gΔEt�1|fflfflfflffl{zfflfflfflffl}
horizon τ�1 CAF

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dynamic effect

ð14Þ

where fΔE is the cumulative emissions change due to energy-based
adaptation between 2021 and year t − 1 accounting for the dynamic
effects of adaptation as defined in Eq. (15):

fΔEt�1 =
Xt�1

s = 2021

X
i

X
h

gEh
i, s, ð15Þ

and β̂ is our mapping between emissions and temperature as described
in Eq. (10) in Methods. Starting in 2021, we calculate the cumulative
change in emissions due to adaptation while accounting for how adap-
tive emissions in turn affect future use for adaptation through theGMST
channel. The first term in Eq. (14) captures baseline emissions from
adaptation as calculated in Eq. (2) and used in themain text. The second
term accounts for how the effects of past emissions from adaptation on
the pathway of GMST in turn affect emissions in that year.

We iterate over the process in Eq. (14) over all country-fuel pairs at
each horizon through 2099, updating the series for cumulative emis-
sions and temperature each period. The iterative procedure ensures
the baseline temperature path (under RCP8.5) is adjusted to reflect the
cumulative level of adaptive emissions changes each year. We then
recalculate the CAF with concurrent dynamics using the updated
energy changes due to adaptation through year 2099. We track the
dynamic CAF each year using Eq. (16):

CAFdyn
τ =

def
β̂
X
i

X
h

Xτ
t

gEh
i, t : ð16Þ

The dashed line in Fig. 3a displays the time series of our baseline CAFτ
without dynamic emissions-temperature linkages and the dynamic
version CAFdyn

τ incorporating concurrent emissions-GMST linkages
over the 2021-2099 period under the baseline SSP2-RCP8.5 scenario.

The concurrent emissions-GMST linkages channel decreases
cumulative emissions and temperature changes (in magnitude) attri-
butable to adaptation. This occurs because of the negative nature of
the CAF: lower emissions from declines in heating use outweigh
additional emissions from increased cooling at each horizon. This in
turn lowers cumulative emissions relative to baseline each year and
with it our forecast for ΔGMST. These lower temperature levels in turn
result in smaller future changes in emissions from adaptation through
the IRFs, as declines in temperature lead to smaller declines in con-
sumption of other fuels and smaller increases in emissions from
electricity. This is indicated by an increasing gap between CAFτ and
CAFdyn

τ over time; the larger the cumulative negative effect from the
CAF, the lower the updated temperature series is relative to baseline.
This further decreases emissions changes from adaptation (in magni-
tude) each year, further lowering the temperature. However, empiri-
cally, we find that this gap between CAFτ and CAFdyn

τ is small in
magnitude. By 2099, CAF2099 is −0.1206 while CAFdyn

2099 is −0.1196.
Given the minor consequence played by such dynamic emissions-
GMST linkages, in our main text we emphasize CAFτ over CAF

dyn
τ .

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Emissions intensities and annual consumption at the country-by-fuel
level are taken from the International Energy Agency’s Emissions Inten-
sities Report and World Energy Balance datasets, respectively. The raw
IEA data are a subscription-only product that cannot be publicly shared.
All other raw and processed data used in the main manuscript and
supplementary information required for a bottom-up replication of all
analysis are publicly available in the Zenodo repository associated with
the paper at https://doi.org/10.5281/zenodo.10476310.
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Code availability
A permanent reference to the specific version of the computer code
used to produce the analysis presented in this manuscript is archived
at https://doi.org/10.5281/zenodo.14894953. The active repository for
the paper is publicly available on GitHub at https://github.com/
xabajian/ACDM_Climate_Adaptation_Feedback.
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