Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop.

Abstract

The Abl tyrosine kinase inhibitor STI-571 is effective therapy for stable phase chronic myeloid leukemia (CML) patients, but the majority of CML blast-crisis patients that respond to STI-571 relapse because of reactivation of Bcr-Abl signaling. Mutations of Thr-315 in the Abl kinase domain to Ile (T315I) were previously described in STI-571-resistant patients and likely cause resistance from steric interference with drug binding. Here we identify mutations of Tyr-253 in the nucleotide-binding (P) loop of the Abl kinase domain to Phe or His in patients with advanced CML and acquired STI-571 resistance. Bcr-Abl Y253F demonstrated intermediate resistance to STI-571 in vitro and in vivo when compared with Bcr-Abl T315I. The response of Abl proteins to STI-571 was influenced by the regulatory state of the kinase and by tyrosine phosphorylation. The sensitivity of purified c-Abl to STI-571 was increased by a dysregulating mutation (P112L) in the Src homology 3 domain of Abl but decreased by phosphorylation at the regulatory Tyr-393. In contrast, the Y253F mutation dysregulated c-Abl and conferred intrinsic but not absolute resistance to STI-571 that was independent of Tyr-393 phosphorylation. The Abl P-loop is a second target for mutations that confer resistance to STI-571 in advanced CML, and the Y253F mutation may impair the induced-fit interaction of STI-571 with the Abl catalytic domain rather than sterically blocking binding of the drug. Because clinical resistance induced by the Y253F mutation might be overcome by dose escalation of STI-571, molecular genotyping of STI-571-resistant patients may provide information useful for rational therapeutic management.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View