- Main
Disruption of normal brain distribution of [18F]Nifene to α4β2* nicotinic acetylcholinergic receptors in old B6129SF2/J mice and transgenic 3xTg-AD mice model of Alzheimer's disease: In Vivo PET/CT imaging studies
Published Web Location
https://doi.org/10.1016/j.neuroimage.2025.121092Abstract
The 3xTg-AD transgenic mouse model develops Aβ plaque and tau pathology and is purported to closely resemble pathological development in the human Alzheimer's disease (AD) brain. Nicotinic acetylcholine receptors (nAChRs) α4β2* subtype, was studied in this mouse model using [18F]nifene PET/CT and compared with non-transgenic B6129SF2/J mice (male and female). Young 2-month old B6129SF2/J exhibited normal [18F]nifene distribution (measured as standard uptake volume ratios, SUVR with cerebellum as reference) thalamus (TH) 3.12> medial prefrontal cortex (mPFC) 2.33> frontal cortex (FC) 2.06> hippocampus-subiculum (HP-SUB) 1.6. At 11-months of age, B6129SF2/J exhibited high, irreversible and non-saturable [18F]nifene binding in mPFC higher than in TH (mPFC 3.8> TH 2.82> FC 1.79> HP-SUB 1.73). The 3xTg-AD also exhibited high mPFC binding, although the region of highest binding within the mPFC was different compared to B6129SF2/J mice (mPFC 2.44> TH 2.27> FC 1.61> HP-SUB 1.48). [125I]IBETA and immunohistochemistry in 3xTg-AD brain slices confirmed Aβ plaques. The TH of 3xTg-AD mice had lower [18F]nifene binding (reduced by approximately 20%) compared to both, young and old B6129SF2/J, and was significant. The mPFC [18F]nifene binding was significantly higher in the old B6129SF2/J compared to both the young B6129SF2/J and the 3xTg-AD mice (>150%). Overall, 3xTg-AD transgenic mice had reduced [18F]nifene binding compared to B6129SF2/J controls, suggesting possible effects of Aβ plaques and Tau on α4β2* nAChRs.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-