Skip to main content
eScholarship
Open Access Publications from the University of California

Guided Mode Evolution and Ionization Injection in Meter-Scale Multi-GeV Laser Wakefield Accelerators

Abstract

We show that multi-GeV laser wakefield electron accelerators in meter-scale, low density hydrodynamic plasma waveguides operate in a new nonlinear propagation regime dominated by sustained beating of lowest order modes of the ponderomotively modified channel; this occurs whether or not the injected pulse is linearly matched to the guide. For a continuously doped gas jet, this emergent mode beating effect leads to axially modulated enhancement of ionization injection and a multi-GeV energy spectrum of multiple quasimonoenergetic peaks; the same process in a locally doped jet produces single multi-GeV peaks with <10% energy spread. A three-stage model of drive laser pulse evolution and ionization injection characterizes the beating effect and explains our experimental results.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View