- Main
Basic amino acids and inorganic polyphosphates in Neurospora crassa: independent regulation of vacuolar pools.
Abstract
At least 78%, and perhaps all, of inorganic polyphosphate is shown to be contained within the vesicles (vacuoles) of Neurospora crassa, where over 97% of the soluble arginine, lysine, and ornithine pools are known to accumulate. Furthermore, synthetic polyphosphate can concentrate arginine up to 400-fold from dilute (0.01 mM) solutions in equilibrium dialysis. For these reasons and because the molar ratio of basic amino acids and polyphosphate phosphorus is approximately 1, we tested the hypothesis that there was an obligate physiological relationship between them. Experiments in which nitrogen starvation and arginine excess were imposed upon cells showed that polyphosphate content was insensitive to changes in the basic amino acid content. Experiments involving phosphate starvation and restoration showed that basic amino acid content was almost wholly independent of polyphosphate pools. Moreover, the normal high degree of compartmentation of arginine in vesicles was maintained despite polyphosphate depletion, and arginine was still exchanged across the vesicular membrane. We conclude that N. crassa, like yeasts, can regulate polyphosphates and basic amino acids independently, and that the accumulation of basic amino acids in vesicles may depend upon an energy-requiring mechanism in addition to the demonstrated charge interaction with polyphosphate.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-