Skip to main content
eScholarship
Open Access Publications from the University of California

Lead-Free Organic–Perovskite Hybrid Quantum Wells for Highly Stable Light-Emitting Diodes

Abstract

Two-dimensional perovskites that could be regarded as natural organic-inorganic hybrid quantum wells (HQWs) are promising for light-emitting diode (LED) applications. High photoluminescence quantum efficiencies (approaching 80%) and extremely narrow emission bandwidth (less than 20 nm) have been demonstrated in their single crystals; however, a reliable electrically driven LED device has not been realized owing to inefficient charge injection and extremely poor stability. Furthermore, the use of toxic lead raises concerns. Here, we report Sn(II)-based organic-perovskite HQWs employing molecularly tailored organic semiconducting barrier layers for efficient and stable LEDs. Utilizing femtosecond transient absorption spectroscopy, we demonstrate the energy transfer from organic barrier to inorganic perovskite emitter occurs faster than the intramolecular charge transfer in the organic layer. Consequently, this process allows efficient conversion of lower-energy emission associated with the organic layer into higher-energy emission from the perovskite layer. This greatly broadened the candidate pool for the organic layer. Incorporating a bulky small bandgap organic barrier in the HQW, charge transport is enhanced and ion migration is greatly suppressed. We demonstrate a HQW-LED device with pure red emission, a maximum luminance of 3466 cd m-2, a peak external quantum efficiency up to 3.33%, and an operational stability of over 150 h, which are significantly better than previously reported lead-free perovskite LEDs.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View