Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

A Monte Carlo study of growth regressions

Abstract

Using Monte Carlo simulations, this paper evaluates the bias properties of estimators commonly used to estimate growth regressions derived from the Solow model. We explicitly allow for measurement error, country-specific fixed effects and regressor endogeneity. An OLS estimator applied to a single cross-section of variables averaged over time (the between estimator) performs best in terms of the extent of bias on each of the estimated coefficients. Fixed-effects and the Arellano–Bond GMM estimator overstate the speed of convergence under a wide variety of assumptions, while the between estimator understates it. Finally, fixed effects and Arellano–Bond bias towards zero the slope estimates on the human and physical capital accumulation variables, while the between estimator and the Blundell–Bond system GMM estimator bias these coefficients upwards.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View