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Abstract Using Monte Carlo simulations, this paper evaluates the bias properties of
estimators commonly used to estimate growth regressions derived from the Solow model.
We explicitly allow for measurement error, country-specific fixed effects and regressor end-
ogeneity. An OLS estimator applied to a single cross-section of variables averaged over time
(the between estimator) performs best in terms of the extent of bias on each of the estimated
coefficients. Fixed-effects and the Arellano–Bond GMM estimator overstate the speed of
convergence under a wide variety of assumptions, while the between estimator understates
it. Finally, fixed effects and Arellano–Bond bias towards zero the slope estimates on the
human and physical capital accumulation variables, while the between estimator and the
Blundell–Bond system GMM estimator bias these coefficients upwards.

Keywords Growth regressions · Measurement error · System-GMM

JEL Classification O47 · O57 · C15 · C23

1 Introduction

In the last decade, spurred by the early work of Baumol (1986) and Barro (1991), growth
regressions have become an industry. There is no good alternative for addressing the
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fundamental question of what accounts for vast observed differences in per capita income
across countries. Yet the detractors of growth regressions have stressed their numerous draw-
backs. These include an often excessive distance between measured variables and the theo-
retical concepts they are meant to capture; poor grounding of estimated functional forms in
economic theory, and in particular the prevalence of reduced form relationships from which
structural parameters cannot be inferred; unjustified claims of causality in explanations of
growth; a small number of available observations; and the prevalence of prior-driven data-
mining. These are but a few in a growing list, resulting in numerous methodological debates
on the proper way to run growth regressions. Many of these debates are as yet unresolved, so
research evaluating the effectiveness of current methodologies and suggesting improvements
to cross-country growth empirics appears necessary.

This paper is such a study. We use simulation methods to evaluate the bias properties of
several estimators commonly used in the empirical growth literature.

The main contribution of our approach is to consider explicitly the impact of measurement
error on estimates of the determinants of growth. Measurement error is likely to be a central
problem in cross-country growth empirics, yet it has received little attention in the literature.1

In the absence of measurement error and other sources of endogeneity, a fixed-effects esti-
mator unambiguously dominates estimators that use any between-country variation, when
omitted variables such as the initial level of technology are correlated with included right-
hand side variables. In the presence of measurement error, however, fixed-effects estimators
will tend to exacerbate measurement error bias when the right-hand side variables are more
time persistent than the errors in measurement. The issue then is whether the gains from
reducing omitted variables are offset by an increase in measurement error bias under fixed-
effects. We lack guidance from econometric theory to evaluate the resulting net bias in the
multivariate context of growth regressions, making Monte Carlo simulations necessary. Our
results evaluating alternative estimators in the presence of a multiplicity of data problems
can guide researchers towards the least biased estimators for growth regressions.

Another contribution of this paper is to help resolve a long-running methodological debate
in growth empirics: whether the appropriate way to control for time invariant cross-country
heterogeneity is to use a fixed-effects estimator, identifying parameters only using within-
country variation, or to retain at least some between-country variation in the data and directly
include as right-hand side variables available proxies for technological differences.2 Advanc-
ing this methodological debate can have important implications for our substantive under-
standing of the growth process, because results obtained using fixed-effects differ markedly
from those obtained by attempting to include additional correlates of growth. First, fixed-
effects lead to estimates of the speed of conditional convergence that are much higher than the

1 One exception occurs in De Long’s (1998) comment on Baumol (1986), where he stressed the potential for
measurement error on income to bias upwards estimates of the speed of convergence. Another notable excep-
tion is Barro (1997, Chap. 1, p. 36), who briefly discusses the probable upward bias in fixed-effects estimates
of the speed of convergence due to measurement error. Griliches and Hausman (1986) make a related point,
though not in the specific context of growth regressions, and Wansbeek (2001) builds on their paper to develop
a systematic way to consistently estimate models with mismeasured data using GMM. See also Temple (1998)
for a discussion of the likely impact of measurement error (among other data problems) on estimates of the
rate of convergence in the augmented Solow model, and Durlauf et al. (2005) for a general discussion of data
problems that plague growth empirics.
2 The first approach is associated with the work of Knight et al. (1993); Islam (1995); Caselli et al. (1996) and
Bond et al. (2001) among others. Since the mid-1990s, the use of dynamic panel data estimators in growth
empirics has become prevalent. The second approach can be likened to a “kitchen-sink” method, in which
the unaccounted variation in economic growth is attributed to additional right-hand side variables, to capture
institutions, policies and economic structures. See Wacziarg (2002) for a discussion of these approaches.
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conventional 2% obtained in cross sectional studies, suggesting that any income gains can be
obtained primarily from improvements in steady-state determinants and not the forces of con-
vergence. Second, the fixed-effects estimator tends to reduce the magnitudes and statistical
significance of the estimated coefficients on right-hand variables compared to cross-sec-
tional alternatives, so that given improvements in steady-state determinants yield smaller
steady-state income gains.3 Third, country-specific fixed effects account for a large share of
the cross-country variation in income levels, suggesting that technological differences rather
than differences in factor quantities account for a large share of differences in economic
performance.4

To evaluate methodologies for growth empirics, we start with the Solow (1956) growth
model, in its human capital-augmented version proposed by Mankiw et al. (1992). The Solow
model is arguably the only solid theoretical foundation for the specific functional forms gen-
erally estimated by practitioners, which involves regressing growth rates on the log of initial
income and a set of steady-state income determinants. A growth specification can be directly
derived from this model, and reasonable values for the exogenous parameters of the model
postulated. Thus, the Solow model appears ideally suited as a starting point for simulations.
Modeling explicitly the dynamic nature of the Solow growth specification, we generate sim-
ulated data with moments resembling those of the empirical data. We then perform Monte
Carlo simulations to evaluate the performance of commonly used estimators under a wide set
of assumptions on the data generating process, including measurement error, reverse causal-
ity in the regressors, country fixed effects, etc. A recent line of research, starting with Caselli
et al. (1996) focuses on GMM estimators that exploit the dynamic nature of the Solow model
and use lagged variables as instruments, to address a variety of sources of endogeneity bias.
We provide a detailed analysis of the Arellano–Bond GMM estimator and the more recent
“system” GMM estimator introduced by Arellano and Bover (1995) and Blundell and Bond
(1998).

Our results suggest that using a least-squares estimator applied to a single cross-section of
variables averaged over time (the between estimator) best estimates the speed of conditional
income convergence.5 The fixed-effects estimator, as well as the Arellano–Bond estimator,
greatly overstate the speed of convergence under a variety of assumptions concerning the
type and extent of measurement error. The random effects estimator also tends to overstate

3 For example, human capital variables that are highly significant in cross-sectional estimates become insig-
nificantly different from zero in panel fixed-effects applications and sometimes reverse signs. See Islam (1995)
and Benhabib and Spiegel (1994).
4 Partly as a result of this last finding, as well as skepticism about cross-country growth regressions, some
researchers turned to a cross-country income accounting approach, aimed at accounting for variation in the
level of income rather than in its growth rate—i.e. excluding lagged income from the right hand side of a
regression explaining income levels. Salient examples include Klenow and Rodríguez-Clare (1997); Hall and
Jones (1999); Frankel and Romer (1999); Acemoglu et al. (2001). This literature relies on calibrations or on
income level regressions to identify the sources of cross-country income variation. See Caselli (2004) for an
excellent survey. The specifications used in this new literature do not lend themselves well to Monte Carlo
simulations: level regressions are less easily traceable to a single theoretical model than their growth counter-
parts, which in most cases can be traced back to some version of the neoclassical growth model. This relative
lack of theoretical foundation makes simulations difficult, as it precludes setting structural parameters equal
to theoretically-founded values. An exception are income levels regressions based on the augmented Solow
model, as in Mankiw et al. (1992) and more recently in Bernanke and Gürkaynak (2001). The validity of these
specifications, however, relies on the unrealistic assumption that countries are located at their steady-states.
Moreover, growth regressions remain vastly more prevalent in the literature on the determinants of economic
development. Thus, we focus on growth regressions in this paper, leaving the evaluation of cross-country
income accounting to future research.
5 While it has been noted elsewhere that OLS may outpeform other estimators in the presence of multiple
sources of bias, we take this insight seriously and confirm it in the context of growth regressions.
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the speed of convergence, though much less drastically than fixed-effects. The instrumental
variables procedure of the Blundell–Bond GMM estimator goes some way towards correct-
ing the deficiencies of the fixed effects and Arellano–Bond estimators. Finally, fixed-effects
seriously biases toward zero the slope estimates on the determinants of the steady-state level
of income (the accumulation and depreciation variables of the Solow model), in particular
on the human capital accumulation rate. In contrast, random effects and between tend to
overstate them (bias them away from zero).

This paper is structured as follows: Sect. 2 briefly discusses theoretical considerations
related to the methodology of growth regressions. Section 3 presents our basic simulation
methodology and results, contrasting OLS, fixed-effects, random effects, the Arellano–Bond
and Blundell–Bond GMM estimators. Section 4 discusses extensions of our simulations
to regressor-specific measurement error, autocorrelated measurement error, alternative true
models, alternative regression specifications and additional estimators. Section 5 concludes
by presenting new estimates of the speed of income convergence and of the effect of steady-
state determinants using real data, and discusses them in light of our simulation results.

2 Theoretical framework

2.1 Growth regressions and the Solow model

The theoretical basis for our data-generating process is the Solow model. We choose it, not
because of any priors that it is a particularly compelling model of growth, but because it is
tractable and constitutes arguably the only strict theoretical basis for the specific functional
forms often estimated in the vast cross-country growth literature. As we show below, this
model is also well-suited for generating simulated data. Mankiw et al. (1992, henceforth
MRW) and Islam (1995) showed that the Solow growth model can be written to allow its
estimation through a simple application of linear regression techniques.

The derivation of the data-generating process is well-known and can be found in the work-
ing paper version of this paper (Hauk and Wacziarg 2004), as well as in Islam (1995) and
MRW (1992). The result is the following growth equation:

log y(t2) = (
1 − e−λτ

) α

1 − α − β
log sk + (

1 − e−λτ
) β

1 − α − β
log sh

− (
1 − e−λτ

) α + β

1 − α − β
log (n + g + δ)

+ e−λτ log y(t1) + (
1 − e−λτ

)
log A(0) + g(t2 − e−λτ t1) (1)

where y(t) is a country’s per-capita income level at time t , sk and sh are the country’s savings
rates in physical and human capital, α and β are the shares of the country’s income attributed to
physical and human capital, n and g are the growth rates of the country’s population and tech-
nology level, δ is the rate at which these variables depreciate, λ = (n + g + δ) (1 − α − β)

is the rate at which the economy converges to its steady-state level of income, and τ = t2 − t1
is the time between two observations on the income variable. The log y(t1) term on the
right-hand side implies that this specification is a growth and not a levels regression. Adding
an error term νi t with mean zero conditional on all the right-hand side variables, capturing
inherent randomness in log yit , we can rewrite Eq. 1 as a fixed-effects panel data regression
of the form:
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log yit = γ0 + γ1 log sk,i t−τ + γ2 log sh,i t−τ + γ3 log (n + g + δ)i t−τ

+ γ4 log yit−τ + µi + ηt + νi t (2)

where t denotes the end of a time period of duration τ and t − τ denotes the beginning of
that period.6 The reduced form parameters and error terms are defined as:

γ1 = (
1 − e−λτ

)
α

1−α−β

γ2 = (
1 − e−λτ

) β
1−α−β

γ3 = − (
1 − e−λτ

) α+β
1−α−β

γ4 = e−λτ

γ0 + µi = (
1 − e−λτ

)
log Ai (0) (an intercept plus a country effect)

ηt = g(t − e−λτ (t − τ)) (a time specific effect)
νi t (a zero-mean error term, possibly correlated with the regressors)

Equation 2 is the functional form used as the data-generating process for the remainder of
this paper. In what follows we will sometimes find it useful to rewrite Eq. 2 as:

log yit = γ ′xit + µi + ηt + νi t (3)

where we define x ′
i t = [1, log sk,i t−τ , log sh,i t−τ , log (n + g + δ)i t−τ , log yit−τ ] and

γ ′ = [γ0, γ1, γ2, γ3, γ4], with the dimension of these vectors denoted Q = 5.

2.2 Country-level heterogeneity

The log A(0) term constitutes a stumbling block for growth regressions. This term captures
the initial level of technology, often approximated using variables such as resource endow-
ments, climate, institutions, government type, and so on. These variables vary widely across
countries, so that we index A(0) by i . Hence, we define γ0 + µi ≡ (

1 − e−λτ
)

log Ai (0),
where γ0 is a constant capturing the average level of initial technology across countries
and µi is a zero-mean country-specific effect. There have been three basic ways of dealing
with country-level heterogeneity (i.e. the µi = (

1 − e−λτ
)

log Ai (0) − γ0 term) to estimate
growth regressions. These methods are associated with the contributions of MRW (1992),
Islam (1995), Caselli et al. (1996, henceforth CEL) and Bond et al. (2001, henceforth BHT),
respectively.

2.2.1 MRW (1992) and Islam (1995)

MRW assumed the µi term had mean zero conditional on other right-hand side variables. As
a result, they ran simple OLS regressions of growth on the log of initial income and time-
averaged steady-state determinants (i.e. a single cross-section), including an intercept in the
regression to account for γ0. This approach causes the estimated coefficients to be biased if
the orthogonality assumption is violated, a major limitation.

Assume that we want to estimate the parameters of the panel data model of Eq. 3:

log yit = γ ′xit + µi + εi t (4)

6 In our actual empirical application of Eq. 2 the determinants of the steady-state level of income log sk , log sh ,
and log(n+g+δ) are entered as averages over the period t −τ to t , rather than their beginning of period values.
This is consistent with the common practice of growth regressions, as in MRW and Islam, where introducing
right-hand side variables as period averages is thought to limit the extent of classical measurement error. Note
that theory gives us no guidance on this choice, as it considers these regressors to be constant.
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where µi is not assumed independent from xit and εi t = ηt + νi t is a well-behaved random-
noise term.

Define X as the N T × Q matrix that stacks xit over time periods t = 1 . . . T and countries
i = 1 . . . N , and µ as the N T × 1 vector that similarly stacks µi . Let 
xx be the Q ×Q
covariance matrix of columns of X , and 
µx the Q ×1 vector of the covariances of µ with
the columns of X . If a pooled OLS (POLS) regression is run on the stacked data, standard
omitted variables bias will result:7

plim γ̂ P O L S = γ + 
−1
xx 
µx (5)

Equation 5 implies that slope estimates will be biased if the country-specific effects are cor-
related with the regressors. In our particular application, the Solow model states that the
omitted term captures some positive multiple of the initial level of technology log Ai (0). The
observed data in X are initial income, rates of human and physical capital accumulation and
population growth. While the Solow model strictly speaking is silent about the correlation
between the log Ai (0) term and the right-hand side variables, there is a strong presumption
that these four variables will be potentially highly correlated with log Ai (0). Hence, esti-
mated coefficients could be seriously biased when the correlation between log Ai (0) and the
steady-state determinants is ignored.

This is Islam’s (1995) original point, advocating the use of fixed-effects estimation instead
of OLS on country means. Islam averaged annual data from the available sample of countries
across time, into 5-year periods. µi is a time-invariant effect if λ is treated as a constant and
τ does not vary with time (i.e. the panel involves equally spaced periods). Hence, it can be
represented as a country fixed-effect in a panel regression. The term g(t − e−λτ (t − τ)) is
a time effect. Using a fixed-effects estimator, Islam found the estimated rate of convergence
was much higher than had been estimated by MRW, and the effect of some right-hand side
variables smaller (particularly human capital).

2.2.2 CEL (1996)

Going one step further, CEL pointed out the necessary correlation between the country-
specific effect µi and the log of initial income resulting from the dynamic nature of the
specification. We can rewrite Eq. 3 as:

log yit = γ0 + γ ′
swi t + γ4 log yit−τ + µi + ηt + vi t (6)

where γ ′
s = [γ1, γ2, γ3] and wi t = [

log sk,i t−τ , log sh,i t−τ , log (n + g + δ)i t−τ

]
. Lagging

Eq. 6 by one period, it is evident that log yit−τ contains µi . Thus, log yit−τ must be correlated
with the error term unless µi is appropriately accounted for.

CEL transformed all variables used in the regressions into deviations from period means
(thereby removing the need for a time-specific intercept ηt ) and then eliminated the country-
specific effects µi by taking first-differences. Their transformed regression is:

˜log yi,t − ˜log yi,t−τ = γ ′
s

(
w̃i,t − w̃i,t−τ

)

+ γ4

(
˜log yi,t−τ − ˜log yi,t−2τ

)
+ (

ν̃i,t − ν̃i,t−τ

)
(7)

7 This bias is also known as heterogeneity bias. We will use the terms heterogeneity bias and omitted variables
bias interchangeably.
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where “˜” denotes deviations of variables from period means. In this specification, while µi

and ηt have been differenced away, the term ˜log yi,t−τ is clearly not independent from ν̃i,t−τ .8

Hence, some sort of instrumental variables approach is required. CEL proposed a GMM esti-
mator similar to the Arellano and Bond (1991, henceforth AB), estimator to deal with the
problems of heterogeneity bias and endogeneity of the differenced lagged income term in
Eq. 7.9 Their estimator results in a consistent estimator for the unknown parameters under
the moment condition E

[
ν̃i,t ν̃i,t−τ

] = 0. They instrument for the differenced independent
variables using all predetermined independent variables (in levels). Specifically, the panel

consists of four time-periods, and the variables
(

˜log yi,1 − ˜log yi,0

)
and

(
w̃i,1 − w̃i,0

)
for

period 1 are instrumented using yi,0 and wi,0. Then,
(

˜log yi,2 − ˜log yi,1

)
and

(
w̃i,2 − w̃i,1

)

are instrumented using yi,0, yi,1, wi,0 and wi,1 and so on. The exclusion of the current period
w̃i,t term from the list of instruments is meant to deal with the possible endogeneity of the
variables in wi t , a valid procedure if all of the instrumental variables are assumed to be
predetermined.10 Consistent estimates are obtained even in the presence of measurement
error on the right-hand side variables, as long as the instruments are not correlated with the
errors in measurement, for example if these are white noise. An additional advantage of this
procedure is to address bias arising from endogenous regressors, under the assumption that
the lagged regressors in levels, used as instruments, are predetermined.

Estimators in the class of the AB estimator require losing at least two periods of data in
order to implement the IV procedure, which could bias estimates when T is small. Another
recently identified drawback of AB is the problem of weak instruments arising in small
samples (small N ), biasing GMM estimates towards their fixed-effects counterparts. This is
likely to be a problem especially when the convergence parameter γ4 is large and when the
variance of the country-specific effect µi is large relative to the variance of log yit . There is
now a sizable literature on weak instruments. For example, Stock et al. (2002) show that in a
two-stage least squares (2SLS) context, if the instruments in the first stage do not help at all
in predicting the endogenous regressors, 2SLS reduces exactly to OLS.11 Staiger and Stock
(1997) provide a rule of thumb for determining whether instruments are weak in the linear
IV case with one endogenous regressor: if the first stage F-test for the joint significance of
the instruments is smaller than 10, then the instruments are declared to be weak. For the
case of multiple endogenous regressors, Stock and Yogo (2003) propose using the Cragg and
Donald (1993) test statistic for underidentification, but using appropriately corrected critical
values in order to use the statistic for a test of the null hypothesis of weak instruments.

We apply this test in Sect. 3 in order to assess whether the AB estimates of the Solow
model are likely to be subject to the weak instruments problem, finding that they are.12 We

8 We will refer to this source of bias as endogeneity bias, to differentiate it from heterogeneity bias.
9 Estimators in this class have been widely used in the empirical growth literature. See for instance Forbes
(2000), Benhabib and Spiegel (1994), Easterly et al. (1997) among many others.
10 The Solow model, however, treats the wi t variables as exogenous, so the endogeneity of wi t should not
be a problem within the strict confines of the model. However, we allow for endogeneity of all RHS variables
throughout our simulations.
11 Stock et al. (2002) define the concentration parameter µ2 as a measure of goodness of fit of the first stage
regression, or equivalently a measure of the strength of the instruments. They state that: “When µ2 = 0 (…),
the instruments are not just weak, but irrelevant. In this case, the mean of the 2SLS estimator is the probability
limit of the ordinary least squares (OLS) estimator, plim(β̂O L S). (…) When the instruments are relevant but
weak, the 2SLS estimator is biased toward plim(β̂O L S).” (p. 519).
12 To evaluate the extent of small sample bias in dynamic panel estimators used to estimate growth regres-
sions, Islam (2000) conducted a Monte Carlo study. He concluded that panel-IV estimators such as the
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will also examine the properties of the AB estimator when N is increased beyond the number
of countries usually available in growth regressions, to assess the extent of small sample bias.

2.2.3 BHT (2001)

To address the problem of weak instruments, Arellano and Bover (1995) and Blundell and
Bond (1998) developed a “system GMM” estimator (henceforth BB), and Levine et al. (2000)
and BHT (2001) applied it to the study of economic growth. In addition to instrumenting for
differenced variables using lagged levels (see Eq. 7), BHT use lagged differences to instru-
ment for levels variables. Both the equation in first differences (with levels instruments)
and the equation in levels (with first-differenced instruments) are included in the system,
to exploit the additional moment conditions valid for the latter equation. This procedure
leads to consistent estimates under a stationarity assumption that the covariance between
log yi,t−τ and µi is constant across values of τ (this assumption is required in addition to
all the assumptions required for the AB estimator). Indeed, if E(µi yi,t−s) = E(µi yi,t−r )

for all s, r , then the moment condition E(µi (yi,t−s − yi,t−r )) = 0 can be used in a GMM
procedure that employs yi,t−s − yi,t−r as an instrument for yi,t−τ (where s > r ≥ τ ).

BHT argue that the BB estimator addresses the weak instruments problem of the AB
estimator, and that their IV procedure eliminates classical measurement error bias. Their
estimates of the convergence parameter in the Solow model are lower than estimates pro-
duced using the AB estimator, consistent with the weak instruments argument. However, the
additional moment conditions must be valid. BHT argue that this assumption is reasonable
in the long-run growth context, if log yi,t−τ is represented as a deviation from period means
as in the AB estimator. However, the Solow model involves not only long-run growth, but
short-run convergence towards steady-states. µi , a function of the level of initial technol-
ogy, is a determinant of the steady-state income level, and as such should be expected, within
countries, to correlate with economic growth along the transition. Hence, it is unclear that the
moment conditions needed for the BB estimator will hold. In the context of our simulations,
this assumption can be evaluated directly—we do so below. If these moment conditions are
invalid, then the BB estimator will be inconsistent in large samples. However, because of
its desirable properties in addressing the weak instruments problem, BB may still be a good
estimator in practice for small samples.13

2.3 Measurement error and heterogeneity bias

In this subsection, we examine what happens once we allow for measurement error in the inde-
pendent variables, in addition to heterogeneity bias. We assume E(log yit |xit ) = γ ′xit + µi

where µi is unobserved and not necessarily orthogonal to the variables in xit .14 Thus, the true

Footnote 12 continued
AB estimator suffer from serious small sample/weak instruments problem, and that the fixed-effects (least-
squares dummy variables) and the minimum distance estimators had the best small sample performance. He
did not, however, consider the issue of measurement error. As we argue below, measurement error is a first
order problem, greatly exacerbating small sample bias in estimators of the AB class.
13 In a further attempt to address the small sample bias problem, Arellano (2003) suggests a method to find
the optimal set of GMM instruments using linear forecasts of all available lags as instruments, and applies it
to the growth context. He reports an estimate of the speed of convergence lying in between that reported by
MRW and CEL (about 4%). To our knowledge this estimator has not been applied more broadly in the growth
context.
14 For simplicity in the rest of this section we continue to ignore the well-known problem arising from using
a fixed-effects estimator in the presence of a lagged dependent variable in xit —i.e. the problem identified in
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model is log yit = γ ′xit + µi + εi t , where E (εi t |xit ) = 0, V (εi t ) = σ 2
ε and εi t = ηt + vi t .

Define x̄ ≡ E(xit ), µ̄ ≡ E(µi ) and σ 2
µ ≡ V (µi ).

We assume that xit cannot be observed, but that we can observe x∗
i t = xit + dit , where

E [dit ] = 0. Define:

var [dit |xit ] = D = diag
{
σ 2

d0
, σ 2

d1
, . . . , σ 2

dQ−1

}
(8)

In our application, we will set σ 2
d0

= 0, i.e. we do not shock the intercept column in X .
Estimating the model using pooled OLS will involve two separate problems: 1) Omitted

variables bias, due to µi being potentially correlated with the right hand side variables in xit ,
2) Measurement error bias, due to xit being imperfectly observed. In this case, it is difficult
to make statements about the sign and magnitude of the bias. This can be seen by deriving
the probability limit of the pooled OLS estimator in the presence of both measurement error
and heterogeneity bias.

The unconditional mean and covariance matrix of (log yit , x∗
i t , µi ) are:

E
(
log yit , x∗

i t , µi
) = (

x̄ ′γ + µ̄, x̄, µ̄
)

(9)

and:

V
(
log yit , x∗

i t , µi
) =

⎡

⎣
σ 2

ε + γ ′
xxγ + 2γ ′
µx + σ 2
µ γ ′
xx + 
′

µx γ ′
µx + σ 2
µ


xxγ + 
µx 
xx + D 
µx

γ ′
µx + σ 2
µ 
′

µx σ 2
µ

⎤

⎦

(10)

Suppose that we estimate γ using pooled OLS with x∗
i t as our observed regressor. Then the

limiting value of the pooled OLS estimator for γ is:

plim γ̂ P O L S = (
xx + D)−1 
xxγ + (
xx + D)−1 
µx (11)

If D = 0, pooled OLS would not involve measurement error bias, and we would recover
Eq. 5. On the other hand, if 
µx = 0, we would have plim γ̂ P O L S = (
xx + D)−1 
xxγ ,
showing that pooled OLS regression would not involve any heterogeneity bias. Even in this
simpler case, we cannot say anything about the sign and magnitude of the bias unless we
can make assumptions about the correlation structure among the various independent vari-
ables and the covariance matrix of measurement error, i.e. if we can place restrictions on
(
xx + D) and 
xx , based on some knowledge of the nature of measurement error. This is
in general a tall order.15

If neither of these two issues were a problem (D = 0 and 
µx = 0), pooled OLS would
be a consistent estimator for γ . In a context where both problems coexist, there may be a
trade-off between reducing the extent of bias due to measurement error and reducing the bias
attributable to heterogeneity. The common way to deal with heterogeneity is to estimate γ

using the fixed-effects (FE) estimator γ̂ F E . Appendix 1 derives the limiting value of γ̂ F E in
the presence of measurement error, showing that it gets rid entirely of heterogeneity bias. It
also derives the limiting value of the between (BE) estimator γ̂ B E , obtained by computing
country means of the data over time and running OLS regressions on these country means.

Footnote 14 continued
the discussion following Eq. 7. We will take this issue into account in our simulations, which explicitly model
the dynamic nature of the empirical Solow model.
15 For a discussion of this point, see Klepper and Leamer (1984).
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Finally, it derives the plim of the random effects (RE) estimator γ̂ RE , a matrix-weighted
average of BE and FE. These limiting values are:

plim γ̂ P O L S = (
xx + D)−1 
xxγ + (
xx + D)−1 
µx (12)

plim γ̂ B E =
(

B

xx + 1
T D

)−1

B

xxγ +
(

B

xx + 1
T D

)−1

µx (13)

plim γ̂ F E =
(

W

xx + T −1
T D

)−1

W

xxγ (14)

plim γ̂ RE =
[(


W
xx + T −1

T D
)

+ θ
(

B

xx + 1
T D

)]−1

×
[(


W
xx + T −1

T D
)

γ F E + θ
(

B

xx + 1
T D

)
γ B E

]
(15)

where 
B
xx denotes the between-country variation in X, 
W

xx denotes the within-country
variation (as defined in Appendix 1), and 
xx = 
W

xx + 
B
xx .

It is difficult to make general statements about what happens to bias from measurement
error under FE and BE estimation in the multivariate case. Measurement error bias on specific
slope coefficients under FE may or may not be exacerbated. This is the main justification
for a Monte Carlo approach to evaluating the properties of these estimators.16 However, a
few statements can be made to compare the properties of pooled OLS, BE and FE estimators
using Eqs. 12, 13 and 15:

1) As noted above, FE gets rid entirely of the heterogeneity bias while there is in general
both measurement error and heterogeneity bias when using the BE and pooled OLS
estimators.

2) The BE estimator tends to reduce the extent of measurement error bias compared to the
other estimators by averaging the imperfectly measured variables over time, reducing
the variance of the measurement error relative to the true signal. Moreover, the greater
is T , the smaller the bias from measurement error.

3) Both pooled OLS and BE will involve smaller heterogeneity bias, the greater the extent
of measurement error. In other words, there is an interaction between these two sources
of bias. All other things equal, measurement error reduces the correlation between the
regressors and the country effects, alleviating the omitted variables problem. For the
same reason, BE will on average involve larger heterogeneity bias compared to pooled
OLS.

4) Comparing FE and BE, if 
W
xx relative to T −1

T D is “smaller” in a matrix sense than 
B
xx

is relative to 1
T D, then the bias arising from measurement error will tend to be smaller

under BE compared to FE. This is likely to hold if the within variation is small compared
to the between variation (most of the variation in the panel arises from the cross-section
rather than the time dimension—which is the case in growth applications), or if T is
large.

To conclude, despite these general lessons, we can say little about the net biases to indi-
vidual parameter estimates as they would result from each estimation method. Given the
multivariate nature of growth regressions, only simulations can determine which estimator
dominates in terms of bias under alternative assumptions about the data-generating process,

16 In Sect. 2.4, and in Appendix 2, we discuss conditions under which measurement error is exacerbated
under FE in the case of univariate regression. We argue these conditions are likely to hold in our particular
application, as in most. Only a Monte Carlo simulation can provide definitive answers for the multivariate
case.
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i.e. the covariance structure of the true data 
xx , the covariances between the true variables
and the country-specific effects 
µx and the covariance matrix of the measurement error D.

2.4 Autocorrelated measurement error: univariate example

Appendix 2 analyzes in detail a simple case illustrating the trade-offs identified above in
a case where net biases can be signed: the case of Q = 2 (a single regressor xit plus an
intercept). This example is also useful to illustrate what happens when measurement error is
autocorrelated.

The example shows clearly that, under FE estimation, eliminating heterogeneity bias may
come at the cost of exacerbating measurement error bias. The greater the time persistence
in xit , the greater the extent to which measurement error bias is exacerbated, as the variance
of the true signal gets differenced away relative to the variance of the error in measurement.
In the context of growth regressions, where right-hand side variables are highly time per-
sistent, this point is particularly central. We cannot say analytically whether this increase in
measurement error bias is worth the elimination of heterogeneity bias unless we know the
moments of the true underlying data and of measurement error.

As argued in Sect. 2.2, a GMM procedure such as AB could in principle deal with both
sources of bias if measurement error is white noise, since measurement error in the instru-
ments is uncorrelated with measurement error in the regressors. However, considering mea-
surement error weakens the first stage relationship between predetermined regressors and the
instruments, potentially making the weak instruments problem worse. Moreover, the validity
of this procedure relies on the assumption of non-autocorrelated errors in measurement.

Appendix 2 shows that when measurement error is autocorrelated, where we define ρd =
corr(dit , dit−τ ), FE exacerbates measurement error bias compared to pooled OLS whenever
ρd < ρx , where ρx is the autocorrelation coefficient in xit . In this case, instrumenting for
differenced xit using its lagged levels values (as in the AB procedure) no longer eliminates
measurement error bias. In words, quite apart from the weak instruments problem, as long
as ρd > 0, we cannot produce a consistent estimator of the desired parameters using the AB
estimator. We consider the case of autocorrelated measurement error in Sect. 4.

2.5 Endogeneity

Another concern we address is the issue of reverse causality between the regressors and the
residual term vi t . This possibility is precluded by the strict version of the exogenous growth
model on which we based our simulation. However, the endogenous nature of the steady-
state determinants is empirically plausible. For example, a positive shock to growth might
encourage investors to save more, thus raising log sk,i t−τ —the so-called accelerator model
of investment. Similarly, a positive shock to growth might cause higher values of log sh,i t−τ .
There is also some evidence suggesting that, as incomes improve, people tend to have fewer
children, thereby lowering log (n + g + δ)i t−τ while vi t rises.

These considerations would introduce another source of bias in estimators that do not
instrument for steady-state determinants. All least-squares estimators rely on some form of
the moment condition plim

[
X ′ν

] = 0 for consistency. If this condition does not hold due to
regressor endogeneity, then the plim of our estimates of γ will be:

plim γ̂ = γ + (
xx )
−1 
xν (16)

where 
xν is the k × 1 covariance matrix between the regressors and vi t .
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Endogeneity was an explicit concern of the CEL and BHT studies cited above. In princi-
ple, both the AB and BB estimators should address the problem of endogeneity by exploiting
the panel nature of growth data: both use lagged values of the regressors to instrument for
current first-differences, and the BB system GMM estimator exploits a second set of moment
conditions to use lagged first differences as an instrument for current levels. Both approaches
produce valid instruments under the assumption that current-period shocks in vi t do not affect
past values of the regressors and that past values of the regressors do not affect current values
of log yit directly. However, these instruments may be weak in small samples.

It is unclear how important regressor endogeneity is in practice. For example, assume that
Q = 2. Then Eq. 16 reduces to:

plim γ̂ = γ + σxν

σ 2
x

where σxν is the covariance between x and ν and σ 2
x is the variance of x . It is apparent

that the bias in γ̂ is a function of the size of σxν relative to σ 2
x . However, we cannot make

σxν arbitrarily large. By definition, σxν = ρxνσxσν , where ρxν is the correlation coefficient
between x and ν, which also by definition must take on a value between −1 and 1. Therefore,

plim γ̂ = γ + ρxν

σν

σx

It necessarily follows that:

−σν

σx
< plim γ̂ − γ <

σν

σx

In words, the maximum possible bias due to endogeneity is bounded above and below by the
ratio σν

σx
. The smaller |ρxν |, the smaller this range. This general principle applies, in matrix

form, for a multivariate regression. In the data-generating process for all our simulations, we
explicitly allow for correlations between νi t and the regressors.

2.6 Summary

Seven factors can cause biased estimates of γ in panel growth regressions. The first is an omit-
ted-variables bias resulting from the possible correlation between country-specific effects and
the regressors, affecting the consistency of pooled OLS, BE and RE estimates. The second
is the endogeneity problem specific to dynamic panels, identified after Eq. 7, making FE and
RE estimates inconsistent. The third problem is the more general issue of the endogeneity of
the steady-state determinants due to reverse causation. The fourth is classical measurement
error on the independent variables, which affects the consistency of pooled OLS, BE, RE and
FE estimator, though the bias tends to be exacerbated under FE and partly averaged away
under BE. The fifth is possible autocorrelation in measurement errors, which results in bias
for the AB estimator. The sixth is the weak instruments problem that can cause bias in the
AB estimator in small samples. Finally, the seventh problem is the possible invalidity of the
specific moment condition needed for the BB estimator to be consistent. A summary of these
potential sources of bias can be found in Table 1.

Each of the estimators under consideration involves a trade-off: pooled OLS suffers from
heterogeneity bias but limits the incidence of measurement error bias relative to FE; the BE
estimator reduces measurement error through time averaging of the regressors, but does not
deal with heterogeneity bias; FE addresses the problem of heterogeneity bias, but tends to
exacerbate the problem of measurement error. The AB will not work well in small samples
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Table 1 Potential sources of bias across estimators

Source of bias Estimator

FE BE RE AB BB

Omitted
country-specific
effect

No bias Bias Bias No bias No bias

Endogeneity of
lagged income term

Bias No bias Bias No bias No bias

Reverse causality in
regressors

Bias Bias Bias No bias in large
samples

No bias in large
samples

Regressor
measurement error

Bias Bias Bias No bias in large
samples

No bias in large
samples

Autocorrelated
regressor
measurement error

Bias Bias Bias Bias Bias

Weak instruments N/A N/A N/A Bias Bias
GMM moment

condition violations
N/A N/A N/A No bias Bias

when instruments are weak or when measurement error is autocorrelated, whereas the BB
estimator will be inconsistent if the necessary moment conditions do not hold. To conclude,
each of the estimators discussed above have their strengths and weaknesses, most of which
cannot be evaluated analytically. Hence, to evaluate the bias properties of these estimators in
the presence of a wide array of data problems, we turn to Monte Carlo simulation.

3 Monte Carlo simulations

3.1 Simulation methodology

Since it is impossible to derive analytical results about the extent and sign of omitted variables,
measurement error biases and small sample biases in a multivariate context, we use Monte
Carlo simulations to evaluate the bias properties of FE, BE, RE, AB and BB estimators. We
consider additional estimators in Sect. 4.17 In our simulations, the data-generating process
for the true data (the data not measured with error) is exactly Eq. 2, i.e. the augmented Solow
model.

3.1.1 Simulated data

Underlying data. We define a period by five years (τ = 5). Our underlying data spans 40
years, from 1960 to 2000, and our 8 five year periods are defined as 1960–1965, 1965–
1970, . . ., 1995–2000. In Eq. 1, the variables log sk,i t−τ , log sh,i t−τ , log(n + g + δ)i,t−τ

and log yit−τ are simulated with moments resembling those of the corresponding observed
variables. To obtain these moments, we captured log sk using the log of investment rates as a
share of real GDP from the Penn World Tables, version 6.1 (Heston et al. 2002, henceforth,
PWT6.1). log sh is the log of the secondary school gross enrollment ratio from Barro and
Lee (2000) and n is the rate of population growth calculated from the PWT6.1 population

17 Results for pooled OLS estimates are available upon request. The pooled OLS estimator is rarely used in
cross-sectional growth regressions since it is less efficient than random effects.
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series.18 In calculating log(n + g + δ), we assumed, conventionally, that g + δ = 0.07.
Finally, log yit−τ is the log of per capita income in purchasing power parity from PWT6.1,
measured at the beginning of the first time period (1960).19

We averaged the variables over relevant time periods and arrayed them in a N ×
(T (Q − 1) + 1) matrix. Since our underlying data was available in all periods for 69 coun-
tries, and we are seeking a balanced panel, we set N = 69.

One assumption implied by our analysis is that that the observed data surely incorporate
measurement error. If we do not take this assumption into account, we will overstate the
variances of the underlying true variables, and understate their cross-correlations. While we
do not know with certainty how great the level of measurement error is in reality, we can
adjust for our assumed levels of measurement in the simulations. It can easily be shown
that, if two variables x1 and x2 are measured with white noise error d1 and d2 such that the
observed values are x∗

1 = x1 + d1 and x∗
2 = x2 + d2, then:

corr(x1, x2) = corr(x∗
1 , x∗

2 ) ×
√(

1 + var (d1)

var (x1)

) (
1 + var (d2)

var(x2)

)
(17)

In our application, we set var (d1) /var(x1) = var (d2) /var(x2) ≡ F , where F is the assumed
“error-to-truth” ratio. Therefore, for any choice of F , we adjust the values of variances and
covariances of the regressors from the observed data using the assumed level of measurement
error, to obtain the moments of the “true” data.

Simulating the fixed effects term. One difficulty we face is simulating the country fixed
effects µi = (

1 − e−λτ
)

log Ai (0) − γ0.20 Theory provides no guidance as to the values
of Ai (0) for different countries, since it is taken as exogenous. The problem is important
because the covariance structure linking the country-specific effects to the observed regres-
sors determines how much heterogeneity bias will be present. To obtain simulated fixed
effects and their corresponding covariance structure with the right-hand side variables, we
used our observed panel data set to run a fixed-effects regression on the specification in Eq. 2.
We computed the fitted country-specific effects from this regression. We then used this series
and treated it as an additional variable, as if it were observed, to generate the moments of the
simulated data.

Obviously, given that the underlying data must incorporate measurement error, this pro-
cedure will lead to biased estimates of the country-specific effects. If this is the case, the
moments of µi and especially its covariance structure with the other right-hand side vari-
ables will also be flawed. It is therefore critical that we also present results with alternative
assumptions about the covariance structure between the simulated fixed effects and the sim-
ulated regressors in xit . We do so in Sect. 3.2.3, comparing simulation results obtained when
varying the extent of the assumed correlations between µi and xit .

18 Our measure of sh differs slightly from that in MRW, who used the gross enrollment ratio in secondary
education multiplied by the fraction of the working age population aged 15–19. We use the gross enrollment
ratio because, as noted in Islam (1995), it is more widely available for a broad panel of countries (this led
Footnote 18 continued
Islam to measure human capital as a stock rather than a flow rate, a route we do not pursue in order to keep
closer to the strict Solow model). At any rate, the correlation between our gross enrollment ratio and MRW’s
schooling variable for the 1960–1985 cross-sectional average is 95.4%, so the difference should be immaterial
in practice.
19 Since the model is dynamic, subsequent values of the initial income term log yit−τ will be generated by
iterating on income using the Solow specification, starting from a value drawn for the first period.
20 The time fixed effect g(t − e−λτ (t − τ)), which is identical for all countries at each date, was generated
for each period t simply by setting the parameters g and λ to their assumed values, and τ = 5.

123



J Econ Growth (2009) 14:103–147 117

Table 2 Correlation structure among regressors and fixed-effects

log sk,i t−τ log sh,i t−τ log(n + g + δ)i t−τ log yit−τ µi

Panel A: Pooled data
log sk,i t−τ 1.0000
log sh,i t−τ 0.6046 1.0000
log(n + g + δ)i t−τ −0.3800 −0.5763 1.0000
log yit−τ 0.6220 0.8086 −0.6640 1.0000
µi 0.6248 0.8031 −0.5957 0.9273 1.0000
Panel B: Between variation
log sk,i t−τ 1.0000
log sh,i t−τ 0.7160 1.0000
log(n + g + δ)i t−τ −0.5004 −0.6594 1.0000
log yit−τ 0.7107 0.8691 −0.7154 1.0000
µi 0.7096 0.9070 −0.6629 0.9622 1.0000
Panel C: Within variation
log sk,i t−τ 1.0000
log sh,i t−τ 0.2104 1.0000
log(n + g + δ)i t−τ 0.0763 −0.2531 1.0000
log yit−τ 0.1497 0.5400 −0.3799 1.0000
µi 0.0000 0.0000 0.0000 0.0000 1.0000

Moments of the underlying data. Table 2, panel A presents the matrix of correlations
among the Q +1 variables of interest in the pooled data used to generate simulated datasets.
For example, once stacked over time and countries, log sk,i t bears a correlation of 0.60 with
log sh,i t . The estimated country-specific effect bears high correlations with the right hand
side variables, suggesting a big scope for heterogeneity bias when using estimators that do
not correct for it. For instance, the correlation between initial income log yi,t−τ and µi is
0.93.21 Panel B isolates the between correlations among variables, by taking time means
(x̄i , µi ) and computing their correlation matrix. The between correlations are quite close to
the pooled data correlations, suggesting that cross-sectional variation dominates in our data.
For example, the between correlation between log sk,i t and log sh,i t is 0.72. Finally, Panel
C displays the within correlations, obtained by computing xit − x̄i . These correlations are
always much lower than either the pooled or between correlations, again suggesting that the
cross-country variation dominates in the pooled data. For example, the within correlation
between log sk,i t and log sh,i t is 0.21.

Draws of simulated data. We are now in the presence of N observations for T (Q −1)+2
variables.22 We computed the (T (Q −1)+2)×1 vector of means for these variables, denoted
m̂x,µ and their variance covariance matrix, denoted �̂x,µ. Stacking the data in this way allows
us to provide a realistic simulation of the relative weights of between and within variations—
by specifying explicitly the autocorrelation structure of the right-hand side variables in addi-
tion to their cross-correlations. Depending on the size of the assumed measurement error (as
discussed above) the rows and columns of matrix corresponding to a mismeasured variable
x are then multiplied by a factor of 1/(

√
1 + Fx ), where Fx is the assumed extent of mea-

surement error on regressor x . For each run of our simulation, we then drew N observations

21 For the sake of illustration, in Table 1 we used every 5-year time-interval observation between 1960 and
1995 for the real data on log yit−τ . In contrast, in our simulations, we are generating log yit−τ from the model,
for all but the first period—due to the dynamic nature of Eq. 18 below. The dynamically simulated data on
log yit−τ and their observed counterparts are very highly correlated (correlations are available upon request).
22 That is, N observations per period for log sk,i t−τ , log sh,i t−τ , log(n + g + δ)i,t−τ , N observations for
log yit−τ in 1960 and N observations on the time invariant country effects.
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for the T (Q −1) + 2 variables from a multivariate normal distribution with mean m̂x,µ and
variance �̂x,µ.

The next part of the data generation procedure is to simulate the residuals νi t . A major con-
cern of many researchers who have studied growth regressions is the potential endogeneity of
the regressors. As discussed above, we might expect investment and educational attainment
to be positively correlated with shocks to the economy. Population growth might also be
affected by shocks to economic growth. Consequently, while generating the residuals for the
simulations, we explicitly allow the residual term to be correlated with log sk,i t−τ , log sh,i t−τ

and log(n+g+δ)i,t−τ and treat these correlations as adjustable parameters in our simulation.
In the baseline simulations, the correlation between log sk,i t and νi t is set to 0.25, as is the
correlation between log sh,i t and νi t , while the correlation between log(n + g + δ)i,t−τ and
νi t is assumed to be −0.25.

We opted to let the variance of the residual differ across time periods, and the residuals
covary across time periods. To do this, we generated the fitted residuals from the fixed-effects
regression using observed data for each period, and arrayed them in a N × T matrix. We
computed their T × T covariance matrix �̂ν . Finally, we generated N sets of T normally
distributed residuals with mean zero and covariance matrix �̂ν . An interesting aspect of this
exercise is that the variance of the fixed-effects estimated residual term ν̂i t was found to be
a small fraction of the variance of log yit .

Using all the parameters and simulated data, we computed the simulated dependent vari-
able log yi,1965 for period 2, using Eq. 2 and the simulated data on log yi,1960. We used this
generated value of log yi,1965 to similarly generate log yi,1970, and so on iteratively until we
obtained log yi,2000. Formally, log income in period t for country i was simulated as:

log yit = γs

t−1∑

j=0

γ
j

4 wi,t− j−1 + γ t
4 log yi0 + µi

t−1∑

j=0

γ
j

4 +
t−1∑

j=0

γ
j

4 νi t− j (18)

3.1.2 Parameter values

There is no guarantee that the generated income data resembles in any way the underlying
real world data. Equation 18 shows that simulated income is a function of past values of
the steady-state determinants in wi t , the log of income at the beginning of the first period
log yi0, the fixed effects µi and a weighted sum of the current and past residuals νi t , as well
as the model’s reduced form parameters in γ . As t increases, the moments of the generated
values of income might diverge more and more from those observed in the true income
data.

To address this issue we calibrated the model’s parameters α and β so that the generated
income variables in a typical draw of the data have moments resembling those of the observed
variables. We found that we did not need to diverge greatly from commonly assumed values
of α and β to obtain a good calibration: in a typical draw of the data, setting α = β = 0.27
delivers moments of generated income variables that look similar to those seen in the PWT6.1
data.23 These variables are conventionally both set to 1/3 in the context of the Solow model
(as discussed for instance in Barro and Sala-i-Martin 1995).

23 Details of our calibration exercise, including a comparison of the moments of the generated data with those
of the observed data, are available upon request.
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The other parameters of the structural model, g, δ and n are set to their conventional
values as in Barro and Sala-i-Martin (1995):

g = 0.02; n = 0.01; δ = 0.05

These parameters imply a speed of convergence λ = (n + g + δ) (1 − α − β) = 3.68%,
slightly higher than the value of 2.67% implied by conventional values of α and β.24 With
these assumed structural parameters and τ = 5, the implied reduced form parameters are as
follows:25

γ1 ≈ 0.099; γ2 ≈ 0.099; γ3 ≈ −0.197; γ4 ≈ 0.832

3.1.3 Measurement error

The dataset generated above is free from measurement error. If we were to run fixed-
effects regressions of log yit on log sk,i t−τ , log sh,i t−τ , log(n + g + δ)i,t−τ and log yit−τ

using repeated draws of the simulated data, the only source of bias in the fixed-effects
regression would be the endogeneity problem that stems from the dynamic nature of the
model.26 Similarly, if we were to run between regressions on simulated data, the estimated
coefficients would not be tainted by measurement error bias.

To evaluate the merits of various estimators used to estimate growth regressions in the
presence of measurement error, we shocked our simulated variables by adding white-noise.27

This can be done in several ways. In our baseline simulations, we simply added a nor-
mally distributed shock with variance equal to some fraction F < 1 of the variance of the
underlying variable (F is the error-to-truth ratio). This was applied to simulated variables
period-by period. Formally, consider first the determinants of the steady-state level of income,
log sk,i t−τ , log sh,i t−τ and log(n + g + δ)i,t−τ . For independent variable xq in period t , we
computed log x∗

q,i t as:

log x∗
q,i t = log xq,i t + dq,i t (19)

with dq,i t ∼ N
(
−F σ̂ 2

qt/2, F σ̂ 2
qt

)
for all i and q = 2 . . . 4, where σ̂ 2

qt is the sample variance

of log xq,i t in period t .28 We proceeded in exactly the same way for the income variable
log yit :

24 We have rerun our simulations assuming α = β = 1/3 and all the results were qualitatively unchanged.
These results are available upon request.
25 Note that in empirical applications of the Solow growth model, a small contradiction exists between the
theoretically derived estimating equation and the linear specification actually estimated: insofar as the rate
of population growth n enters the equation as a variable (in the term log (n + g + δ)), then terms such as(

1 − e−λt
)

, where λ depends in part on n, should not be treated as constant. However, doing so is an accept-

able approximation since variation in n is likely to have a small impact on variation in e−(1−α−β)(n+g+δ)τ ,
while it will have a larger impact on variation in log(n + g + δ). At any rate, we follow common practice in
treating e−λτ as a constant and log(n + g + δ) as a variable.
26 Additionally, if we simulated the income data without the error term νi t , fixed effects would lead us to
recover exactly the reduced form theoretical parameters γ of the model. We did this to check our simulation
program for errors, and the corresponding results are available upon request.
27 Obviously, we did not shock the fixed-effects µi nor the intercept.
28 dit is distributed with a non-zero mean because if log x∗

i t = log xit + dit then x∗
i t = xit edit . That is, edit

is log-normally distributed and multiplicative. Because a log-normal distribution has a mean of eµd +σ2
d /2
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log y∗
i t = log yit + dy,i t (20)

where dy,i t ∼ N
(
−F σ̂ 2

yt/2, F σ̂ 2
yt

)
for all i , where σ̂ 2

yt is the sample variance of log yit in

period t .
In the specifications above, the variance of the measurement error can vary period-

by-period insofar as the variance of the underlying true data varies. In other words, the
T (Q −1)× T (Q −1) variance covariance matrix of the errors-in-variables, �̂d , is diagonal,
with the diagonal elements allowed to differ across regressors and time.

The parameter F is set to four values: 0%, 5%, 10%, and 15%.29 There are two limi-
tations to this approach. First, we are assuming that the error-to-truth ratio is common to
all variables. We do not have strong priors on the relative levels of measurement error for
different variables, and this assumption has the advantage of simplicity. We relax it in Sect. 4
by varying the extent of measurement error on income, for reasons explained below. Second,
it is difficult to know what value of F is appropriate. Hence, it is essential to vary F to assess
the robustness of our results. However, we do have some priors on reasonable ranges for F :
note that all variables are entered in logs, so even a value of F = 5% may imply rather large
shocks, especially on the underlying income variable yit . Our additive term dy,i t translates
into a multiplicative term edy,i t applied to yit (income in 1996 PPP dollars).

We can display draws of the mismeasured variables pooled across time periods and com-
pute the average absolute value of the shocks, a summary measure of the extent of mea-
surement error. Table 3 displays these values as well as the pooled sample averages of the
underlying unshocked variables, for comparison. To construct Table 3, we drew simulated
data for 2,000 countries in the 8-period panel, i.e. 16,000 observations.

Consider first measurement error on income yit . For F = 5%, the average absolute value
of measurement error was $230, for F = 10% it was $323 and for F = 15% it was $396.
These are to be compared to the pooled sample mean of simulated income, which is $4,997.
The magnitudes we obtain on the other variables seem more moderate, due to the fact that
their values are between 0 and 1. Consider for instance the rate of physical capital accumu-
lation sk : for F = 5%, the average absolute value of measurement error was 0.30 percentage
points, for F = 10% it was 0.41 percentage points and for F = 15% it was 0.50 percentage
points. The pooled sample mean of sk was roughly 17%. Similar relative orders of magni-
tudes hold for sh and (n + δ + g), as shown in Table 3. While it is hard to know what the
appropriate level of measurement error would be, the range of values displayed in Table 3
does not seem unreasonable.

Footnote 28 continued
(where µd and σ 2

d are the mean and variance of dit , respectively) we adjust µd so that E
[
edit

]
= 1 and

E
[
x∗

q,i t

]
= xq,i t . This adjustment is necessary in order to avoid systematically understating or overstating

each mismeasured regressor.
29 As an additional check, we also ran our simulations with extreme values of F : 25% and 50%. The qualitative
properties of our results were unchanged, but the extent of bias quickly became unreasonably large. Note also
that Eq. 17 can help place an upper bound on the extent of white noise measurement error, since we must have
−1 ≤ corr(x1, x2) ≤ 1. Looking at the matrix of correlations between the underlying observables, it appears
that values of F in the 0−10% range preclude most adjusted correlations from being greater than 1 in absolute
value, and are thus reasonable. Values above 10% quickly lead to implied correlations of many true variables
that are greater than 1, and are thus excessive a priori. The systematic analysis of the interesting limitations
imposed on the nature and extent of classical measurement error by this type of inequality restriction (along
with the required positive definiteness of the covariance matrix of the true data) is a topic we leave for future
research.
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Table 3 Magnitude of measurement error on the underlying data (based on various values of F)

% Income ($) Investment
rate (% GDP)

Secondary enrollment
rate (%)

Population
growth (%)

Average value of
unshocked
variable

4997.15 17.17 51.40 1.59

Average absolute
value of shock
with F

1 102.821 0.13 0.44 0.01
2.5 158.571 0.21 0.68 0.02
5 230.383 0.30 1.00 0.03

10 323.118 0.41 1.38 0.04
15 396.056 0.50 1.63 0.04

Averages computed from simulated data for 2,000 countries in the 8-period panel, i.e. 16,000 pooled obser-
vations

3.1.4 Regressions on simulated data

Having generated simulated data and shocked it with classical measurement error, we can
now evaluate the bias properties of alternative estimators in the presence of correlated coun-
try-specific effects, endogenous regressors and measurement error. We estimated Eq. 2 on
draws of simulated data using five estimators: fixed-effects (FE), between (BE), random
effects (RE), Arellano–Bond (AB) and Blundell–Bond (BB). We stored the estimated slope
coefficients from each run, and repeated this procedure 1000 times. We then computed the
means of the resulting estimates, and compared those to the known true parameters. The
difference between the mean estimates and the corresponding true parameters gives a
measure of bias for each estimates of the slope parameters in γ . The average absolute value
of these biases across parameters is used as summary measures of bias across the slope ele-
ments of γ . Although our discussion of the results focuses on bias, the standard errors of the
estimates from simulated data are also available to examine the efficiency properties of the
estimators.30

3.2 Baseline simulation results

3.2.1 10% Measurement error

In our baseline case, we set the error-to-truth ratio F equal to 10% for all the right-hand side
variables in the model and the correlation between the regressors and νi t at 25%. Table 4,
column 3 presents the resulting estimates based on averages over 1000 runs. In terms of
the average absolute value of bias on the slope parameters, our results reveal that the BE
estimator dominates by a wide margin: average absolute bias is 34%, while the same number
for the other four estimators exceeds 100% in all cases. As suggested by econometric theory,
estimators that use the within variation exacerbate measurement error bias, and BE averages
it out.

Turning to individual coefficient estimates, BE tends to bias the estimate of the conver-
gence parameter γ4 upward by 20%—the average simulated coefficient is 0.995 versus a true

30 A discussion of the efficiency properties of the various estimators we considered can be found in the work-
ing paper version of this study, Hauk and Wacziarg (2004). On a related topic, Windmeijer (2005) discusses the
small sample efficiency properties of two-step GMM estimators that are efficient asymptotically, and develops
a correction.
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Table 4 Varying the error–truth ratio: average estimated coefficients and bias (1000 runs, residual correla-
tion=25%)

True
Coeffs

(1) (2) (3) (4)

Error-to-truth ratio: F = 0% F = 5% F = 10% F = 15%

Variable Mean Bias
(%)

Avg
Coeff

Bias
(%)

Avg
Coeff

Bias
(%)

Avg
Coeff

Bias
(%)

Fixed effects
log sk,i t−τ 0.099 0.094 −5 −0.033 −133 0.005 −95 −0.015 −115
log sh,i t−τ 0.099 0.077 −22 −0.068 −169 −0.114 −216 −0.105 −207
log(n + g + δ)i t−τ −0.197 −0.279 41 −0.731 270 −1.136 476 −1.065 440
log yit−τ 0.832 0.787 −5 −0.026 −103 0.189 −77 0.121 −85
Avg. Abs. Bias 19 169 216 212
Implied λ 3.68% 0.048 30 N/A N/A 0.333 804 0.422 1047
Between
log sk,i t−τ 0.099 0.081 −18 0.073 −26 0.077 −22 0.075 −23
log sh,i t−τ 0.099 0.116 18 0.086 −12 0.105 6 0.101 2
log(n + g + δ)i t−τ −0.197 −0.025 −87 −0.036 −82 −0.026 −87 −0.019 −91
log yit−τ 0.832 0.982 18 1.019 23 0.995 20 1.000 20
Avg. Abs. Bias 35 36 34 34
Implied λ 3.68% 0.004 −90 −0.004 −110 0.001 −97 0.000 −100
Random effects
log sk,i t−τ 0.099 0.110 11 0.337 241 0.210 113 0.235 138
log sh,i t−τ 0.099 0.173 75 0.412 317 0.326 231 0.359 264
log(n + g + δ)i t−τ −0.197 −0.175 −11 −2.636 1236 −1.401 610 −1.705 764
log yit−τ 0.832 0.924 11 0.453 −46 0.701 −16 0.642 −23
Avg. Abs. Bias 27 460 242 297
Implied λ 3.68% 0.016 −57 0.158 330 0.071 93 0.089 141
Arellano–Bond
log sk,i t−τ 0.099 0.095 −3 −0.097 −198 −0.069 −170 −0.092 −193
log sh,i t−τ 0.099 0.070 −29 −0.135 −237 −0.261 −365 −0.230 −333
log(n + g + δ)i t−τ −0.197 −0.239 21 −0.127 −36 −0.649 229 −0.485 146
log yit−τ 0.832 0.797 −4 −0.041 −105 0.099 −88 0.053 −94
Avg. Abs. Bias 15 144 213 192
Implied λ 3.68% 0.045 24 N/A N/A 0.462 1154 0.586 1493
Arellano–Bover/Blundell–Bond
log sk,i t−τ 0.099 0.104 6 0.339 244 0.232 135 0.263 167
log sh,i t−τ 0.099 0.158 60 0.361 266 0.326 230 0.356 261
log(n + g + δ)i t−τ −0.197 −0.249 26 −3.382 1614 −2.320 1076 −2.685 1261
log yit−τ 0.832 0.931 12 0.388 −53 0.644 −23 0.578 −30
Avg. Abs. Bias 26 544 366 430
Implied λ 3.68% 0.014 −61 0.189 414 0.088 139 0.110 198

coefficient of 0.832 (the implied speeds of convergence, i.e. λ parameter, are respectively
0.1% and 3.68%).31 In contrast, both the FE and AB severely bias this coefficient downwards,
with average biases of −77% and −88% respectively, implying very high speeds of conver-
gence (respectively 33.3% and 46.2%). In terms of the pattern of coefficients, this broadly
replicates the finding of the literature—where the FE or AB estimates of the convergence
speed are an order of magnitude higher than the between estimate. CEL, for example, report
a speed of convergence of 10% per year based on the AB estimator—5 times larger than the

31 To calculate λ from the estimate of γ4, recall that γ4 = e−λτ . Therefore, it follows that λ = − log(γ4)/τ

where τ = 5.
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2% cross-sectional estimate in MRW.32 On the other hand, the BB estimator significantly
better estimates the convergence coefficient than the AB estimator, though it still exhibits a
downwards bias. The γ4 parameter is estimated as 0.644 by BB, which implies a λ of 8.8%.
Our results suggest that the finding of fast convergence in the literature employing fixed-
effects estimators may be traceable to the incidence of exacerbated measurement error bias.

Turning to the other slope parameters of the Solow model, interesting results also emerge.
While all the estimators involve some bias, the direction and magnitudes of the biases differs
sharply. BE tends to bias the human capital parameter slightly away from zero: the coefficient
on log sh,i t is biased upward by 6%. The corresponding bias when using FE is a downward
bias of 95%. Our simulation accounts for differences between estimators found in the liter-
ature—where FE typically lead to a coefficient estimate on the human capital accumulation
variable that is closer to zero than BE. For example, Islam (1995) shows that the estimated BE
coefficient on log sh,i t is roughly 0.182, and equals −0.071 when using FE. Our correspond-
ing BE estimate is 0.105, and our FE estimate is −0.114. Similar comparisons would hold
when we turn to AB rather than FE—the accumulation parameters are both severely biased
towards zero, and the depreciation parameter γ3 is biased away from zero. The BB estimator
in this instance, behaves similarly to the RE estimator in that all of the slope parameters of
the Solow model are significantly biased upwards. Again, our results suggest that the finding
of smaller effects of the accumulation variables in the fixed-effects literature compared to
the cross-sectional literature may be largely attributable to measurement error bias.

AB estimates are very close to the FE estimates, suggesting that the weak instruments
problem may be prevalent here. To evaluate this more formally, we implemented the test
of the null hypothesis of weak instruments suggested by Stock and Yogo (2003), using the
real world data that serves as a basis for our simulations. This test is based on computing
the Cragg and Donald (1993) statistic, a generalization of the first-stage F-test for the case
of multiple endogenous regressors.33 The statistic is then compared to the critical values in
Stock and Yogo (2003). The critical values depend on parameter b, the maximum amount
of squared bias that the researcher is willing to accept relative to squared OLS bias (in our
case, FE bias). For instance, a value b = 0.1 indicates that the maximal allowable bias of the
IV estimates is 10% of the maximum OLS bias. In our case, the value of the Cragg-Donald
statistic was 1.513, which is smaller than all critical values whatever the value of b presented
in Stock and Yogo (2003) (these range from 5% to 30%). Thus, we fail to reject the null of
weak instruments at the 5% significance level even when we are willing to accept a high
level of AB bias relative to FE bias.34

32 The precise extent to which γ4 is biased downwards when using FE and AB in our simulations obviously
depends on the postulated extent of measurement error and the postulated correlations between µi and the
elements of xit . If the error-to-truth ratio is brought down to 5%, the estimated speed of convergence is brought
down to 22.05% for FE and to 32.50% for AB. These values remain higher than those reported in the literature.
In Sect. 4.1 we discuss how to obtain more reasonable values of FE and AB estimates of the convergence
speed by reducing the extent of measurement error on the income term log yit —Sect. 3.2.3 suggested that the
average absolute value of the shock to yit might be too high, on the order of $2,000 for the pooled sample in
the baseline simulation with F = 10%. This is to be compared for a pooled sample mean of simulated income
equal to roughly $5,000.
33 In our application we allow all the right hand side variables to be predetermined—so that all four regressors
are instrumented for. In doing this we follow the practice in CEL. See the discussion after Eq. 7. Formally, the
Cragg-Donald statistic is the smallest eigenvalue of the matrix analog of the F-statistic from the first stage
regression. See Stock and Yogo (2003).
34 We also implemented the Staiger and Stock (1997) rule of thumb based on the first stage F-statistics.
Strictly speaking, the rule of thumb is only valid for the case of one endogenous regressor. But the values of
our first stage F-statistics were sufficiently below 10 to reinforce our confidence that the weak instruments
problem is important here. The F-statistics for the first-stage regression of lagged first-differenced initial
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As long as the first stage relationship between the instruments (in levels) and the regres-
sors (in first differences) is not exactly zero, the weak instruments bias should vanish in large
samples. To further examine whether weak instruments are responsible for the AB bias we
observe in our simulations even without measurement error, we reran our simulations setting
N = 1000 instead of N = 69. The results (available upon request) decisively indicate that
the weak instruments problem is almost entirely responsible for the AB bias. The bias almost
goes away when the cross sectional sample size is raised to 1000 (the average absolute bias
is 3% instead of 192%). As soon as measurement error is introduced, however, large AB
biases reappear even when N = 1000. The reason is that the introduction of measurement
error weakens the first stage relationship between the differenced regressors and the levels
instruments, considerably slowing down convergence to the true parameters as the sample
size is raised. In Sect. 4, we further examine the sensitivity of our results to varying the
sample size N .

This weak instruments problem regarding the AB estimator has been noted by BHT,
who propose the BB system GMM estimator as a corrective for empirical growth models.
In principle, the BB estimator should solve the weak instruments problem, but, as noted
above, it also requires additional moment conditions to hold to ensure its consistency. Con-
sistent with the findings of BHT, we find that the estimate of the convergence coefficient
using the BB estimator is in between the estimate from the AB estimator and the BE esti-
mator—in this case with a downwards bias of 23%. This makes it clearly superior to the
AB estimator, but it is still somewhat farther away from the true parameter than the BE
estimator. On the other estimated coefficients, there is a strong upwards bias (for example,
an upwards bias of 135% on the log sk,i t parameter). It seems likely, as a result, that the
additional moments conditions necessary for the consistency of the BB estimator may not
hold.

Finally, Table 4 also reveals that RE performs more poorly than several other
estimators when the summary measure of bias is the average absolute value of the bias
(here 242% compared to 34% for the between estimator). This is important because this
estimator is frequently used by growth regression practitioners who wish to retain the
panel dimension but are unwilling to discard all the between variation in the data. How-
ever, RE does quite well in estimating the convergence parameter, displaying a bias of
only −16%. The other slope parameters are all biased upwards. For instance the coef-
ficient on log sk,i t is biased upward by 113%. One possible reason is that, contrary to
between, RE does not average measurement error over time, nor does it address the prob-
lem of heterogeneity bias. The interaction of these two biases, which is hard if not impos-
sible to characterize analytically, turns out to result in large net biases in this particular
application.

3.2.2 Varying the extent of measurement error

Increasing the error-to-truth ratio to 15% or reducing it to 5% does not generally change the
conclusions reached above (Table 4, columns 2 and 4). As expected, the average absolute bias
tends to (weakly) increase with the error-to-truth ratio for most estimators, though this is not
necessarily true for individual parameter estimates. An interesting feature of our simulations
is how increases in the extent of measurement error across columns of Table 4 seem to little

Footnote 34 continued
income on its instruments was 4.73, and the corresponding values for savings on physical capital, savings on
human capital and the depreciation term were, respectively, 4.03, 2.71 and 2.22.
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affect the BE estimate of the coefficient on lagged income per capita—in fact the upward
bias on γ4 remains equal to 18–23% whatever the value of F .

Interesting lessons can also be learnt when measurement error is shut down entirely. While
unrealistic, this exercise allows us to isolate the overall incidence of other sources of bias,
besides measurement error. Table 4, column (1) presents simulation results when F = 0.
As predicted, BE still tends to create an upward bias on the lagged income coefficient, an
upward bias on the effect of human capital, and a downward bias on the depreciation term.
Clearly, the strong positive correlation between the country-specific effect and the lagged
income term, built into our simulations, accounts for the upward bias on log yit−τ when
country fixed effects are not included in the regression. The results suggest that most of
the bias in the BE estimates seen when F is set to a value different from zero is attribut-
able to heterogeneity and endogeneity bias, as the biases on individual coefficients change
little as F is increased. In other words, BE does a good job at averaging away measurement
error.

When F = 0, FE estimates are also biased. This is because FE does not address the
endogeneity problem inherent to dynamic panels and reverse causality between growth and
the regressors. Our simulations allow us to isolate these problems. The biases are relatively
small, especially on the main parameter of interest γ4 (biased downwards by −5%). This
bias quickly gets swamped by measurement error bias when F is increased. The AB and
BB estimators, which are supposed to get rid of endogeneity bias, do display biases of
similar magnitudes as FE. Moreover the biases on the various slope parameters are sim-
ilar in signs and relative magnitudes to the FE biases. As discussed above, this is due to
the weak instruments problem in AB, which tends to bias AB estimates towards FE. In
the BB estimator, a violation of the necessary moment conditions may cause the observed
bias.

To summarize, as predicted by theory, when measurement error is not present, BE is tainted
by heterogeneity bias, the other estimators perform better and the AB estimator in particular
performs best. Even in the presence of a small amount of measurement error (F = 5%), large
biases appear when using FE, and the BE estimator asserts itself as the dominant estimator
in terms of average absolute bias. Moreover, in that case we are able to broadly replicate the
pattern of estimates found in the literature across estimators.

3.2.3 Varying the extent of endogeneity bias

Our next step is to examine how the results changes when we vary the extent to which the
regressors are correlated with the regression residual term νi t . We assumed a correlation of
25% between contemporaneous values of log sk,i t and log sh,i t and νi t , and a correlation
of −25% between log(n + g + δ)i,t−τ and νi t . We maintained the practice of keeping the
absolute value of the correlations equal for all three steady-state determinants, but varied the
correlation to 0%, 40% and 55%.35

The results appear in Table 5. For comparison purposes, the baseline simulation where the
correlation is 25% appears in column 2. A result that immediately jumps out is that the BE

35 This methodology in which all of the correlations are varied simultaneously prevents us from choosing
arbitrarily high levels of endogeneity. In particular, the residual terms have to be chosen so that the vari-
ance–covariance matrix between the simulated residuals and all of the other simulated variables is positive
semi-definite. When we make the residuals highly correlated with all of the RHS variables, this criterion may
not be satisfied. In practice, we found that it was difficult to avoid singularity problems as the correlation level
approached 60%.
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Table 5 Varying the residual correlation with regressors: average estimated coefficients and bias (1000 runs,
F = 10%)

True (1) (2) (3) (4)
Coeffs

Error correlation: 0% 25% 40% 55%

Variable Mean Bias Avg Bias Avg Bias Avg Bias
(%) Coeff (%) Coeff (%) Coeff (%)

Fixed effects
log sk,i t−τ 0.099 −0.005 −105 0.005 −95 −0.003 −103 −0.001 −101
log sh,i t−τ 0.099 −0.115 −217 −0.114 −216 −0.115 −217 −0.109 −210
log(n + g + δ)i t−τ −0.197 −1.120 468 −1.136 476 −1.159 487 −1.100 458
log yit−τ 0.832 0.191 −77 0.189 −77 0.192 −77 0.193 −77
Avg. Abs. Bias 217 216 221 211
Implied λ 3.68% 0.331 800 0.333 804 0.330 796 0.329 794
Between
log sk,i t−τ 0.099 0.077 −22 0.077 −22 0.077 −22 0.077 −22
log sh,i t−τ 0.099 0.105 7 0.105 6 0.105 6 0.106 7
log(n + g + δ)i t−τ −0.197 −0.021 −89 −0.026 −87 −0.020 −90 −0.022 −89
log yit−τ 0.832 0.995 20 0.995 20 0.995 20 0.994 19
Avg. Abs. Bias 34 34 34 34
Implied λ 3.68% 0.001 −97 0.001 −97 0.001 −97 0.001 −97
Random effects
log sk,i t−τ 0.099 0.205 108 0.210 113 0.207 110 0.204 107
log sh,i t−τ 0.099 0.328 233 0.326 231 0.326 230 0.328 233
log(n + g + δ)i t−τ −0.197 −1.383 601 −1.401 610 −1.387 603 −1.365 592
log yit−τ 0.832 0.702 −16 0.701 −16 0.703 −16 0.703 −16
Avg. Abs. Bias 239 242 240 237
Implied λ 3.68% 0.071 92 0.071 93 0.071 92 0.071 92
Arellano–Bond
log sk,i t−τ 0.099 −0.078 −179 −0.069 −170 −0.078 −179 −0.074 −175
log sh,i t−τ 0.099 −0.266 −370 −0.261 −365 −0.264 −368 −0.257 −361
log(n + g + δ)i t−τ −0.197 −0.644 226 −0.649 229 −0.660 235 −0.627 218
log yit−τ 0.832 0.098 −88 0.099 −88 0.099 −88 0.102 −88
Avg. Abs. Bias 216 213 217 210
Implied λ 3.68% 0.465 1164 0.462 1154 0.463 1159 0.456 1138
Arellano–Bover/Blundell–Bond
log sk,i t−τ 0.099 0.226 129 0.232 135 0.230 133 0.224 127
log sh,i t−τ 0.099 0.331 236 0.326 230 0.329 234 0.332 237
log(n + g + δ)i t−τ −0.197 −2.270 1051 −2.320 1076 −2.299 1065 −2.246 1039
log yit−τ 0.832 0.646 −22 0.644 −23 0.644 −23 0.645 −23
Avg. Abs. Bias 359 366 364 356
Implied λ 3.68% 0.087 138 0.088 139 0.088 139 0.088 139

estimator is substantively unaffected by the extent of endogeneity. The average absolute bias
for all four levels of endogeneity is 34%, which is also the lowest level of bias across all five
estimators for all four levels of endogeneity. Perhaps surprisingly, the relative performance
of the AB and BB estimators is not affected either by endogeneity bias. For all four levels of
endogeneity, the average absolute bias ranges between 210% and 217% for AB and 356%
and 366% for BB. These results indicate that the presence of higher levels of endogeneity
than found in our baseline simulation does not overturn our basic result that BE outper-
forms the other estimators. As a result, even with relatively high correlations between the
regressors and νi t , the actual impact of endogeneity on the estimated coefficients is relatively
small.
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Why is this the case? A priori, the relative performance AB and BB, both GMM estima-
tors that use lagged variables as instruments, should improve as the endogeneity problem
becomes greater. However, results from our initial regressions to determine the moments
of the simulated variables indicate that variation in νi t is small relative to variation in the
independent variables (including the country fixed effects).36 Thus, in terms of the discussion
in Sect. 2.5, there is limited scope for endogeneity bias when the baseline estimates for the
simulations rely of the fixed effects estimator. In Sect. 4.5, we examine the sensitivity of
our results to using alternative estimators (or “true models”) in order to generate simulated
data.

3.2.4 Varying the extent of heterogeneity bias

We now examine how our results change when we vary the extent of heterogeneity bias,
holding measurement error fixed at some baseline level. As described in Sect. 3.1.2, the
assumed correlations between the right hand side variables and the country fixed effect µi

used to draw simulated data were based on estimated values of µi from an FE regression. In
the presence of measurement error, these estimated µi s will be inconsistent estimates of the
true country fixed-effects, so their sample correlations with the regressors will themselves
be flawed. Hence, it is critical to examine what happens when we change these assumed
correlations.

Table 6 displays simulation results when varying the correlations between the country-
specific effects and the regressors, while setting F = 10% and the correlation between
the RHS variables and the residuals at 25%. Table 1 showed that the correlations used
for our baseline simulations were high. For example, in the pooled sample the correla-
tion between our estimated µi and log yit−τ was 0.93, and the correlation with log sh,i t−τ

was 0.80. Here we simply multiply all these assumed correlations, variable-by-variable and
period-by-period, by a single constant C < 1, prior to generating the simulated data.37

We allowed C to take on the values 0%, 50% and 75%. For the sake of comparison, col-
umn (5) of Table 6 also reports the results obtained when C = 100% (i.e. column (3) of
Table 4).

Table 6 demonstrates that the biases obtained under FE when varying C do change sig-
nificantly, suggesting that at least some of the FE bias comes from endogeneity and not
simply measurement error. Notably, the bias on the estimate of γ4 declines (from −55%
when C = 0% to −77% when C = 100%). As expected from econometric theory, the AB
estimate of γ4 exhibits a greater degree of stability across values of C .

We now turn to the BE estimator in the extreme case where C=0. Again, this is an unreal-
istic assumption, but it allows us to evaluate the incidence of measurement error in isolation
from heterogeneity bias. We observe that the average absolute value bias is increased (to
162% compared to 34% when C=100%), but that the pattern of signs and relative magni-
tudes for the bias is roughly in line with the results in column (3) of Table 4. The convergence
parameter γ4 now exhibits a larger bias (35% rather than 20%). The same pattern holds for
all the other slope parameters: as C rises, the extent of bias is progressively reduced, illus-
trating nicely a central message of this paper: as the incidence of heterogeneity bias rises, it

36 In intuitive terms, when the variance of νi t is small relative to the variance of the regressors, even a large
assumed correlation between these variables will translate into a small covariance and therefore a small bias
term.
37 That is, we modified the relevant entries of the data covariance matrix �̂x,µ used to generate the simulated
series.
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Table 6 Varying heterogeneity bias (alternative correlations between µi and the regressors): F = 10%,
residual correlation = 25%, 1000 runs

True (1) (2) (3) (4)
Coeffs

FE correlation: C = 0% C = 50% C = 75% C = 100%

Variable Mean Bias Mean Bias Mean Bias Mean Bias
(%) (%) (%) (%)

Fixed effects
log sk,i t−τ 0.099 0.069 −30 0.032 −67 0.020 −80 0.005 −95
log sh,i t−τ 0.099 0.049 −50 −0.022 −123 −0.063 −164 −0.114 −216
log(n + g + δ)i t−τ −0.197 −0.204 3 −0.572 190 −0.860 336 −1.136 476
log yit−τ 0.832 0.374 −55 0.283 −66 0.238 −71 0.189 −77
Avg. Abs. Bias 35 112 163 216
Implied λ 3.68% 0.196 434 0.253 587 0.287 680 0.333 804
Between
log sk,i t−τ 0.099 0.007 −93 0.025 −75 0.039 −60 0.077 −22
log sh,i t−τ 0.099 −0.072 −173 −0.030 −130 0.015 −85 0.105 6
log(n + g + δ)i t−τ −0.197 0.491 −349 0.362 −284 0.248 −226 −0.026 −87
log yit−τ 0.832 1.125 35 1.099 32 1.066 28 0.995 20
Avg. Abs. Bias 162 130 100 34
Implied λ 3.68% −0.024 −164 −0.019 −151 −0.013 −135 0.001 −97
Random effects
log sk,i t−τ 0.099 0.088 −11 0.130 32 0.164 67 0.210 113
log sh,i t−τ 0.099 0.074 −25 0.172 74 0.241 144 0.326 231
log(n + g + δ)i t−τ −0.197 −0.161 −18 −0.589 198 −0.924 369 −1.401 610
log yit−τ 0.832 0.863 4 0.809 −3 0.764 −8 0.701 −16
Avg. Abs. Bias 15 77 147 242
Implied λ 3.68% 0.029 −20 0.042 15 0.054 46 0.071 93
Arellano–Bond
log sk,i t−τ 0.099 0.015 −85 −0.055 −156 −0.068 −169 −0.069 −170
log sh,i t−τ 0.099 0.034 −65 −0.134 −235 −0.198 −301 −0.261 −365
log(n + g + δ)i t−τ −0.197 −0.490 148 −0.615 212 −0.664 237 −0.649 229
log yit−τ 0.832 0.059 −93 0.004 −99 0.045 −95 0.099 −88
Avg. Abs. Bias 98 176 200 213
Implied λ 3.68% 0.565 1436 1.084 2845 0.621 1587 0.462 1154
Arellano–Bover/Blundell–Bond
log sk,i t−τ 0.099 0.110 12 0.168 70 0.205 108 0.232 135
log sh,i t−τ 0.099 0.091 −7 0.217 120 0.288 192 0.326 230
log(n + g + δ)i t−τ −0.197 −0.290 47 −1.114 465 −1.726 775 −2.320 1076
log yit−τ 0.832 0.827 −1 0.742 −11 0.687 −17 0.644 −23
Avg. Abs. Bias 17 166 273 366
Implied λ 3.68% 0.038 3 0.060 62 0.075 104 0.088 139

increasingly mitigates the problem of measurement error for the BE estimator. In this case,
the two sources of bias tend to cancel each other out.

4 Extensions

This section considers various extensions to our basic simulation method. We consider what
happens when we change assumptions on the extent and nature of measurement error,
when we change the estimator used to generate the fixed effects and the residual term,
when we depart from the strict confines of the Solow model. We also examine the prop-
erties of two additional estimators frequently used in the empirical literature on economic
growth.
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4.1 Varying measurement error on income

While our baseline simulation results replicate the broad differences in past findings on con-
vergence and the determinants of steady-state income level across estimators, the estimated
speed of convergence under the FE, AB and BB estimators was too high relative to the BE
estimate—we obtained an FE estimate of λ = 33.3% and a BE estimate of λ = 0.1%, while
the literature finds values in the neighborhood of 10% and 2%, respectively. Moreover, in
Sect. 3.1.3 we showed that an error-to-truth ratio of F = 10% implies an average abso-
lute value error in measurement of roughly $323, while the mean of simulated income was
$4,997. While it is difficult to know what the appropriate extent of measurement error is,
this is possibly too big.38 In this subsection we examine whether reducing the extent of
measurement error on log income can help match convergence speeds estimated in the litera-
ture: we reduce the extent of measurement error on the income term (Fy), while maintaining
F = 10% on the other variable. We consider values of Fy equal to 0%, 1%, 2.5%, and 5%.

We might expect reduced measurement error on log yit to reduce attenuation bias on its
coefficient and thereby improve the performance of the FE, AB and BB estimators (though
this of course is not always true in the presence of measurement error on the other variables).
Our intuition turns out to be borne out: Table 7 demonstrates that with a value of Fy = 1%,
we obtain FE and AB estimates of λ that are much closer to those found in the past literature:
9.3% and 10.9%, respectively. On the BB estimator, the convergence coefficient is quite close
to the true value, slightly underestimating the rate of convergence for small levels of mea-
surement error slightly overestimating it when Fy = 5%. This performance is similar to our
baseline simulations in Table 4. The BE estimate of γ4 is unchanged compared to our baseline
simulations, with an upward bias on the convergence coefficient, confirming our suggestion
that most of this bias is attributable to the omission of the country-specific effect µi .

In general, the average absolute value bias becomes much lower for the AB, BB and FE
estimators, largely because the bias on the income term is now reduced. In fact, when we set
Fy = 0, these estimators get convergence almost right, suggesting that measurement error
in this variable is important to replicate the pattern of γ4 estimates found in the literature.

To summarize, when we allow for a smaller error-to-truth ratio on income, we are able
to obtain FE, AB and BB estimated speeds of convergence that are much closer to those
obtained when using real data. The extent of bias on the other parameters is not affected
much by measurement error on income. We still get BE estimates of γ4 that are too large
(and therefore BE estimates of λ that are too small) relative to the existing cross-country
literature.

4.2 Autocorrelated measurement error

So far, we have assumed classical measurement error, i.e. the error in measurement was purely
white noise. However, errors in measurement could be autocorrelated. For instance, if a coun-
try has over-reported the amount of savings in physical capital in one period, it may be more

38 In contrast, the extent of measurement error on the other variables, implied by setting F = 10%, seemed
more realistic. Some have argued that per capita income may be better measured than savings rates on human
capital sh , physical capital sk and the depreciation variable (n + g + δ). In principle population growth n
will be well-measured, but recall that we had to make an assumption of constancy across time and countries
for δ and g, which surely introduces error. Similarly, sh in the Solow model should be measured by dollars
saved per unit of time for the purpose of financing education, but we followed the literature in proxying for
this using gross enrollment rates in secondary education. However, it is well-known that different methods of
computing price indices and PPP exchange rates can deliver vastly different estimates of PPP income.

123



130 J Econ Growth (2009) 14:103–147

Table 7 Varying measurement error on initial income, 1000 runs (F = 10% on the other variables, residual
correlation=25%)

Variable True Fy =0% Fy =1% Fy =2.5% Fy =5%
Coeffs

Mean Bias Mean Bias Mean Bias Mean Bias
(%) (%) (%) (%)

Fixed effects
log sk,i t−τ 0.099 0.067 −32 0.051 −48 0.034 −66 0.017 −83
log sh,i t−τ 0.099 0.030 −70 −0.005 −105 −0.036 −136 −0.075 −176
log(n + g + δ)i t−τ −0.197 −0.146 −26 −0.392 99 −0.616 212 −0.872 342
log yit−τ 0.832 0.771 −7 0.628 −24 0.487 −41 0.337 −60
Avg. Abs. Bias 34 69 114 165
Implied λ 3.68% 0.052 42 0.093 152 0.144 291 0.218 492
Between
log sk,i t−τ 0.099 0.081 −18 0.080 −19 0.080 −19 0.079 −20
log sh,i t−τ 0.099 0.107 9 0.107 9 0.108 9 0.106 8
log(n + g + δ)i t−τ −0.197 −0.025 −87 −0.032 −84 −0.030 −85 −0.022 −89
log yit−τ 0.832 0.989 19 0.990 19 0.990 19 0.992 19
Avg. Abs. Bias 33 33 33 34
Implied λ 3.68% 0.002 −94 0.002 −94 0.002 −94 0.002 −96
Random effects
log sk,i t−τ 0.099 0.106 7 0.117 19 0.135 37 0.163 65
log sh,i t−τ 0.099 0.128 30 0.155 57 0.191 94 0.244 147
log(n + g + δ)i t−τ −0.197 −0.151 −23 −0.311 58 −0.531 169 −0.864 338
log yit−τ 0.832 0.952 14 0.923 11 0.877 5 0.809 −3
Avg. Abs. Bias 19 36 76 138
Implied λ 3.68% 0.010 −73 0.016 −57 0.026 −29 0.042 15
Arellano–Bond

log sk,i t−τ 0.099 0.065 −34 0.034 −65 −0.010 −110 −0.044 −144

log sh,i t−τ 0.099 0.016 −84 −0.052 −153 −0.128 −229 −0.201 −304

log(n + g + δ)i t−τ −0.197 −0.129 −35 −0.335 70 −0.462 134 −0.569 188

log yit−τ 0.832 0.768 −8 0.581 −30 0.390 −53 0.222 −73

Avg. Abs. Bias 40 79 132 177

Implied λ 3.68% 0.053 43 0.109 195 0.189 412 0.301 717

Arellano–Bover/Blundell–Bond

log sk,i t−τ 0.099 0.018 2 0.112 14 0.133 35 0.169 71

log sh,i t−τ 0.099 0.014 13 0.132 34 0.171 74 0.232 135

log(n + g + δ)i t−τ −0.197 0.142 11 −0.503 155 −0.869 340 −1.439 629

log yit−τ 0.832 0.010 16 0.923 11 0.865 4 0.777 −7

Avg. Abs. Bias 10 53 113 211

Implied λ 3.68% 0.008 −79 0.016 −57 0.029 −21 0.050 37

likely to do so in subsequent periods. Hence, measurement error can be expected to persist.
Moreover, as discussed in Sect. 2, persistent measurement error invalidates the IV procedure
of the AB and BB estimator when it comes to addressing measurement error bias. In this
subsection, we run simulations where autocorrelation is built into measurement error. Specif-
ically, the T (Q − 1) × T (Q − 1) variance–covariance matrix of the errors-in-variables, �̂d ,
is now block diagonal, with the diagonal elements identical to what they were before, and the
off-diagonal elements of each T × T block equal to the postulate covariance between errors
across periods. Errors are then drawn from a multivariate normal distribution with covariance
matrix �̂d , as before. We denoting the autocorrelation coefficient of the errors as ρd .
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In this case, we do have some theoretical priors as to how persistence in measurement error
might affect the results. If measurement error is highly persistent over time, we would expect
FE to perform better relative to the case of ρd = 0, for two reasons: first, with persistence in
dq,i t , some of the measurement error will be differenced away when the data is differenced
from its country means. In other words, the greater the autocorrelation in measurement error,
the larger the between component of measurement error and the smaller the within compo-
nent. Since FE will difference away the between variation, we expect greater autocorrelation
in the measurement error term, all else equal, to improve the performance of FE relative to
BE. In the limit, when the autocorrelation coefficient ρd is 1, we would expect FE to get rid
of all of the measurement error, as it will get entirely differenced away.39

We ran simulations when the measurement error autocorrelation term was ρd = 0.5, ρd =
0.75 and ρd = 0.90, setting F = 10%. The results in Table 8 show that our theory-driven
priors are confirmed by the simulations. Average absolute value bias is at it lowest when
ρd = 90% in FE, AB and BB estimators. When the autocorrelation term is only 50%, the
convergence coefficient γ4 exhibits a 20% bias using the BE estimator and a −48% bias
using the FE estimator (in the baseline case of ρd = 0, the corresponding numbers were 20%
and −77%, respectively). When the autocorrelation term is increased all the way to 90%,
which is probably much too high, the BE coefficient has a bias of 21% and the FE bias of
−24%. Therefore, while we confirm our intuition that the FE estimator improves relative to
the BE estimator when we increase persistence in measurement error, BE tends to do better
or as well as alternative estimators even as ρd is raised to implausibly high levels. Even high
persistence in measurement error does not invalidate the overall conclusions reached in the
baseline case.

4.3 Increasing sample size

As we indicated above in Sect. 3, we suspect that the primary deficiency with the AB estima-
tor is a weak instruments problem. Indeed, when we ran the simulation with our sample size
set to N = 1000, the bias in the AB estimator was substantially reduced. Noting that the AB
estimator works well with such a large sample, though, will be of little practical importance
in the context of economic growth, where sample sizes rarely exceed 150 countries. How-
ever, our baseline simulations use a balanced panel of 69 countries, which may be smaller
than a growth regression that uses an unbalanced panel. Consequently, in this section, we
repeat our baseline simulations with F = 0%, 5%, 10% and 15%, but with a sample size of
N = 150.

Our results from this exercise are found in Table 9. Results on the FE, BE and RE esti-
mators are largely unaffected by sample size. This results is not surprising—for estimators
that do not use instrumental variables, an increase in sample size will perhaps improve the
efficiency of the estimators but will not affect biases. More interesting is the fact that increas-
ing the sample size does not have a noticeable effect on the AB and BB GMM estimators.
For the simulation where F = 10, the AB estimator had a 213% average absolute bias
when the smaller sample size was used and a 207% average absolute bias when the larger
sample was used. Similar results exist for the other levels of F . Therefore, while it may be
the instruments used in the AB estimator are weak in small samples, the sample size has
to be increased beyond a realistic amount before instruments are substantially strengthened.
Also, while the BB estimator purportedly offers stronger instruments than AB, its perfor-
mance does not improve either when the sample size is increased. With the smaller sample,

39 We checked that this is the case, and the results are available upon request.
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Table 8 Autocorrelated measurement error (F = 10%, residual correlation=25%, 1000 runs)

Variable True Coeffs ρd = 50% ρd = 75% ρd = 90%

Mean Bias (%) Mean Bias (%) Mean Bias (%)

Fixed effects
log sk,i t−τ 0.099 0.029 −70 −0.001 −101 0.065 −34
log sh,i t−τ 0.099 −0.060 −160 −0.109 −210 −0.008 −108
log(n + g + δ)i t−τ −0.197 −0.771 291 −1.100 458 −0.542 175
log yit−τ 0.832 0.432 −48 0.193 −77 0.629 −24
Avg. Abs. Bias 142 211 85
Implied λ 3.68% 0.168 356 0.329 794 0.093 153
Between
log sk,i t−τ 0.099 0.076 −23 0.077 −22 0.071 −28
log sh,i t−τ 0.099 0.094 −4 0.106 7 0.079 −19
log(n + g + δ)i t−τ −0.197 −0.024 −88 −0.022 −89 −0.042 −79
log yit−τ 0.832 1.001 20 0.994 19 1.010 21
Avg. Abs. Bias 34 34 37
Implied λ 3.68% 0.000 −101 0.001 −97 −0.002 −104
Random effects
log sk,i t−τ 0.099 0.159 61 0.204 107 0.116 18
log sh,i t−τ 0.099 0.235 139 0.328 233 0.154 57
log(n + g + δ)i t−τ −0.197 −0.803 307 −1.365 592 −0.302 53
log yit−τ 0.832 0.821 −1 0.703 −16 0.925 11
Avg. Abs. Bias 127 237 35
Implied λ 3.68% 0.040 7 0.071 92 0.016 −57
Arellano–Bond
log sk,i t−τ 0.099 −0.020 −120 −0.074 −175 0.032 −68
log sh,i t−τ 0.099 −0.180 −282 −0.257 −361 −0.121 −223
log(n + g + δ)i t−τ −0.197 −0.315 60 −0.627 218 −0.191 −3
log yit−τ 0.832 0.430 −48 0.102 −88 0.600 −28
Avg. Abs. Bias 128 210 80
Implied λ 3.68% 0.169 359 0.456 1138 0.102 178
Arellano–Bover/Blundell–Bond
log sk,i t−τ 0.099 0.160 62 0.224 127 0.114 15
log sh,i t−τ 0.099 0.212 115 0.332 237 0.156 59
log(n + g + δ)i t−τ −0.197 −1.288 553 −2.246 1039 −0.507 157
log yit−τ 0.832 0.798 −4 0.645 −23 0.907 9
Avg. Abs. Bias 183 356 60
Implied λ 3.68% 0.045 23 0.088 139 0.020 −41

its average absolute bias was 366%. When the sample size is increased, however, the aver-
age absolute bias actually to 393%. The problem with the BB estimator is not primarily
one of strong vs. weak instruments, but rather one of invalid moment conditions needed for
consistency.

4.4 Alternative underlying models

Throughout this study, the assumed underlying “true” model used to generate data for the
simulations is a fixed-effects model with the Solow model structural parameters assumed to
be α = β = 0.27. As we discussed in Sect. 2, the simulations use the moments of the residuals
from a FE regression on the real-world data in order to generate the simulated residuals. These
residuals have two components: µi , a country-specific effect that is highly correlated with
our regressors (see Table 1), and νi t , a white-noise residual term that, by construction, has a
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Table 9 Varying the error–truth ratio with more observations: average estimated coefficients and bias (1000
runs, residual correlation=25%, N = 150)

True (1) (2) (3) (4)
Coeffs

Error-to-truth ratio: F = 0% F = 5% F = 10% F = 15%

Variable Mean Bias (%) Avg
Coeff

Bias
(%)

Avg
Coeff

Bias
(%)

Avg
Coeff

Bias
(%)

Fixed effects
log sk,i t−τ 0.099 0.088 −11 0.025 −75 0.003 −97 −0.013 −114
log sh,i t−τ 0.099 0.056 −43 −0.101 −202 −0.112 −214 −0.105 −207
log(n + g + δ)i t−τ −0.197 −0.376 91 −1.026 420 −1.133 474 −1.114 465
log yit−τ 0.832 0.747 −10 0.341 −59 0.202 −76 0.131 −84
Avg. Abs. Bias 39 198 215 217
Implied λ 3.68% 0.058 59 0.215 484 0.320 769 0.407 1006
Between
log sk,i t−τ 0.099 0.082 −17 0.080 −19 0.079 −20 0.078 −21
log sh,i t−τ 0.099 0.118 20 0.113 14 0.108 10 0.104 6
log(n + g + δ)i t−τ −0.197 −0.042 −79 −0.033 −83 −0.031 −84 −0.032 −84
log yit−τ 0.832 0.979 18 0.986 18 0.991 19 0.996 20
Avg. Abs. Bias 33 34 33 33
Implied λ 3.68% 0.004 −89 0.003 −92 0.002 −95 0.001 −98
Random effects
log sk,i t−τ 0.099 0.111 12 0.166 68 0.208 111 0.237 140
log sh,i t−τ 0.099 0.177 80 0.277 181 0.330 234 0.360 265
log(n + g + δ)i t−τ −0.197 −0.215 9 −0.919 366 −1.394 606 −1.735 780
log yit−τ 0.832 0.919 10 0.784 −6 0.698 −16 0.640 −23
Avg. Abs. Bias 28 155 242 302
Implied λ 3.68% 0.017 −54 0.049 32 0.072 95 0.089 143
Arellano–Bond

log sk,i t−τ 0.099 0.090 −8 −0.048 −148 −0.084 −185 −0.107 −208

log sh,i t−τ 0.099 0.048 −51 −0.310 −414 −0.282 −386 −0.248 −352

log(n + g + δ)i t−τ −0.197 −0.247 25 −0.620 214 −0.545 176 −0.473 140

log yit−τ 0.832 0.779 −6 0.261 −69 0.154 −82 0.106 −87

Avg. Abs. Bias 23 211 207 197

Implied λ 3.68% 0.050 36 0.269 631 0.375 918 0.449 1119

Arellano–Bover/Blundell–Bond

log sk,i t−τ 0.099 0.108 9 0.168 70 0.224 127 0.256 159

log sh,i t−τ 0.099 0.160 62 0.253 157 0.301 205 0.317 222

log(n + g + δ)i t−τ −0.197 −0.331 68 −1.696 760 −2.599 1217 −3.108 1476

log yit−τ 0.832 0.923 11 0.753 −10 0.643 −23 0.576 −31

Avg. Abs. Bias 38 249 393 472

Implied λ 3.68% 0.016 −57 0.057 54 0.088 140 0.110 200

correlation coefficient of 0.25 with contemporaneous regressors.40 This procedure presents
two potential weaknesses. The first is that, while the assumption that α = β = 0.27 closely
follows the values of α = β = 1

3 typically assumed in the Solow Model, we cannot be sure

40 As before, we continue to include time effects in the residuals and correspondingly include time dummies
in the regressions where applicable, but this does not play an important role in our analysis or results.
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that these coefficients are in reality the true growth parameters.41 Also, as we note throughout
the paper, using an FE regression to estimate these parameters is unlikely to reproduce the
true coefficients. As a result, residuals generated from such a regression may not have the
same moments as true Solow residuals. In this section, we relax these assumptions. Doing so,
we can test the robustness of our results to differing assumptions about the true coefficients
and associated residuals µi and νi t .

We use both the estimated values of γ obtained from FE, BE, RE, AB and BB regressions
on the observed data as baseline “true” parameters, and from there generate moments for
the simulated residuals. We maintain the practice of breaking the observed residuals into a
country-specific effect µi and a white-noise term νi t and use the moments of both in our
data-generating process.42 As before, we impose a correlation coefficient of 0.25 between
νi t and its contemporaneous regressors and allow µi to have whatever correlations are
observed using estimates from the original data. We also use a baseline measurement error
value of F = 10% for all simulations. When switching between underlying models in this
section, three sets of parameters change in the data-generating process: the values of γ used
as true coefficients, the variances of µi and νi t , and the correlations between µi and the
regressors.

Table 10 reports the results. A general lesson from this table is that when assuming a given
underlying model, that model tends to perform relatively better compared to the theory-driven
true model used in the simulations of Sect. 3. For instance, when the true slope parameters
are assumed to be AB estimates on the real data, the AB estimator performs better than we
found in Sect. 3. However, the relative rankings of estimators is largely preserved. So, for
instance, BE still outperforms AB even when the true underlying coefficients are assumed
to be the AB estimates.

In columns (1)–(3) we see the results of simulations using FE, AB and BB as the underly-
ing models. In these simulations—all three of which use coefficients based on within-country
variation and have residual terms that are highly correlated with the regressors—the BE esti-
mator still performs well. It is clearly superior to all of the other estimators in terms of both
average absolute bias and estimating the convergence coefficient when the AB and BB coef-
ficients are assumed the true model. Under the true FE model, the FE estimator outperforms
it slightly in terms of average absolute bias and the RE estimator comes somewhat closer
to correctly estimating the convergence coefficient. By neither measure, however, is the dif-
ference very large. In columns (4) and (5)—the BE and RE true models, respectively—the
performance of the BE estimator is even more striking. Because these models by construction
generate values of µi that are not correlated with the regressors, the effect of country-level
heterogeneity is largely taken out of the data-generating process. As a result, the BE estimator
performs exceptionally well both in absolute and relative terms. Under the BE “true” model,
the BE estimator nearly perfectly estimates the convergence coefficient and has an average
absolute bias of only 4%. The performance is similarly strong for the FE model, where BE
again comes quite close to the true convergence coefficient and has an average absolute bias
of 14%. No other estimator even comes close to replicating this performance in both cases.
We conclude our basic results are not very sensitive to the selection of our underlying true
model.

41 In a past version of this paper, we also allowed α to vary across countries using data on capital shares from
Caselli and Feyrer (2006). This did not affect our results.
42 µi is simply the average of the residual term across time periods within each country. νi t is the deviation
from this average in each time period.
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4.5 Alternative specification

The estimation problems discussed in Sect. 2 are not specific to the Solow growth model,
and are likely to exist in any dynamic panel data model with regressors that are both time-
persistent and measured with error. To test the generalizability of our results to other growth
specifications, and hence the broader applicability of our results to the empirical literature
on the determinants of growth, we start from specification from Barro and Sala-i-Martin
(2003), from their Table 12.3, column 2. This regression does not stem from or test a spe-
cific growth theory, but rather regresses economic growth on a number of potential growth
determinants.43 We collected data as close as possible to that used in the Barro and Sala-
i-Martin regression, and replicated as closely as we could their regression results, using
Seemingly Unrelated Regression (as they did).44 We treated the resulting parameters as
the true parameters, since we lack any theoretical guidance on the true parameters. We
then repeated the Monte Carlo simulations described above, only using the moments-matrix
of the newly collected data and the estimated true parameters as the basis for the sim-
ulated data. The country fixed effects were generated simply by averaging each coun-
try’s error terms across time—the deviation from this average gave us the moments of
the residual. The simulation of income and adding measurement error was done exactly as
previously.

This approach has several drawbacks, which should be recognized up-front. In particular,
theory provides no guidance as to the true values of the parameters, forcing us to rely on
estimated parameters as the true ones. However, as discussed above, these parameters cannot
be the true ones in any real or postulated sense, since their estimation is tainted by bias.
Second, we choose a widely cited, but specific empirical model, and there is no guarantee
that the results will hold up to alternative specifications. Hence, the results of this exercise
should be taken only as suggestive.

Our results are shown in Table 11. We focus on the case of F = 10%. The BE estimator
outperforms the other four in terms of average absolute bias. Moreover, BE comes very close
to getting the convergence parameter right, while FE and AB, as before, seriously overstate
the speed of convergence and tend to understate the impact of steady-state determinants.45

As before, BB and RE perform somewhat in-between: the convergence speed is overstated,
and coefficients on the time persistent regressors tend to be biased away from zero. Despite
all the caveats that apply to this exercise, we see much of the same qualitative pattern of
biases in this specification as we do in the original simulations.

4.6 Other estimators

4.6.1 Flexible random effects (SUR)

In this subsection, we evaluate the bias properties of the Seemingly Unrelated Regressions
(SUR) estimator, commonly used in the empirical growth literature (see, for example, Barro
and Sala-i-Martin 1995, Chap. 12). This estimator is computationally close to the RE esti-

43 This specification regresses log income at the end of the period on log income at the beginning of the
period and the following variables: upper level schooling, inverse life expectancy, log fertility, the government
consumption ratio, a rule of law index, a democracy index, the democracy index squared, trade openness,
terms of trade change, the investment ratio and the inflation rate.
44 We replicated this exercise using the fixed effects estimator as an alternative estimator to generate the true
coefficients and the fixed effects. Our results, which are available upon request, were qualitatively unchanged.
45 The extent to which they overstate it is probably excessive, for the reasons discussed in Sect. 4.1—i.e. the
extent of measurement error on the income term is probably excessive.
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Table 11 Barro-style regressions: 1000 runs

Error-to-truth ratio: True Coefs F = 5% F = 10% F = 15%

Variable Mean Bias (%) True Coefs Mean Bias (%)

Fixed effects

Log Lagged Income 0.825 −0.036 −104 −0.155 −119 −0.209 −125

Upper Level Schooling 0.018 −0.007 −141 −0.007 −138 −0.001 −107

Inverse Life Expectancy −0.292 0.026 −109 0.047 −116 0.037 −113

Log Fertility −0.091 −0.191 110 −0.161 77 −0.140 54

Govt. Consump. Ratio −0.046 −0.079 71 −0.079 70 −0.077 66

Rule of Law Index 0.021 0.013 −36 0.010 −52 0.006 −72

Democracy Index 0.519 0.077 −85 0.041 −92 0.003 −99

Democracy-squared −0.528 0.023 −104 0.040 −108 0.055 −110

Trade Openness 0.080 0.432 439 0.440 448 0.419 422

Terms of Trade Ratio 0.055 −0.021 −138 −0.013 −124 −0.001 −102

Investment Ratio 0.010 0.011 8 0.010 −4 0.008 −17

Inflation Rate −0.022 −0.030 38 −0.030 38 −0.029 37

Avg. Abs. Bias 115 116 110

Between

Log Lagged Income 0.825 0.861 4 0.854 4 0.847 3

Upper Level Schooling 0.018 0.023 28 0.024 30 0.023 27

Inverse Life Expectancy −0.292 −0.410 40 −0.379 30 −0.376 29

Log Fertility −0.091 0.048 −152 0.039 −143 0.022 −125

Govt. Consump. Ratio −0.046 −0.045 −2 −0.041 −11 −0.046 −1

Rule of Law Index 0.021 0.003 −87 0.004 −81 0.005 −75

Democracy Index 0.519 −0.050 −110 −0.001 −100 0.008 −98

Democracy-squared −0.528 −0.014 −97 −0.031 −94 −0.031 −94

Trade Openness 0.080 0.039 −52 0.038 −52 0.039 −51

Terms of Trade Ratio 0.055 −0.107 −293 −0.061 −210 −0.044 −180

Investment Ratio 0.010 0.011 6 0.011 8 0.010 3

Inflation Rate −0.022 −0.031 45 −0.030 42 −0.029 34

Avg. Abs. Bias 76 67 60

Random effects

Log Lagged Income 0.825 0.619 −25 0.520 −37 0.457 −45

Upper Level Schooling 0.018 0.042 129 0.052 184 0.059 224

Inverse Life Expectancy −0.292 −0.606 107 −0.638 118 −0.661 126

Log Fertility −0.091 −0.139 53 −0.194 114 −0.227 149

Govt. Consump. Ratio −0.046 −0.072 56 −0.072 55 −0.078 68

Rule of Law Index 0.021 0.021 0 0.031 49 0.038 83

Democracy Index 0.519 0.009 −98 0.062 −88 0.091 −82

Democracy-squared −0.528 0.026 −105 0.042 −108 0.050 −109

Trade Openness 0.080 0.078 −3 0.082 2 0.076 −6

Terms of Trade Ratio 0.055 0.010 −81 0.014 −74 0.011 −81

Investment Ratio 0.010 0.010 2 0.011 7 0.011 9
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Table 11 continued

Error-to-truth ratio: True Coefs F = 5% F = 10% F = 15%

Variable Mean Bias (%) True Coefs Mean Bias (%)

Inflation Rate −0.022 −0.023 5 −0.022 0 −0.020 −5

Avg. Abs. Bias 56 70 82

Arellano–Bond
Log Lagged Income 0.825 −0.092 −111 −0.187 −123 −0.218 −126
Upper Level Schooling 0.018 0.028 54 0.005 −70 0.006 −68
Inverse Life Expectancy −0.292 −0.193 −34 −0.056 −81 −0.007 −98
Log Fertility −0.091 −0.321 254 −0.234 157 −0.163 80
Govt. Consump. Ratio −0.046 −0.028 −41 −0.001 −98 0.011 −124
Rule of Law Index 0.021 0.015 −29 0.017 −18 0.013 −35
Democracy Index 0.519 0.056 −89 −0.050 −110 −0.126 −124
Democracy-squared −0.528 0.020 −104 0.089 −117 0.118 −122
Trade Openness 0.080 0.349 335 0.318 296 0.322 301
Terms of Trade Ratio 0.055 −0.048 −186 −0.038 −168 −0.017 −131
Investment Ratio 0.010 0.010 −5 0.003 −70 0.000 −105
Inflation Rate −0.022 −0.033 53 −0.035 61 −0.035 60
Avg. Abs. Bias 108 114 115
Arellano–Bover/Blundell–Bond
Log Lagged Income 0.825 0.569 −31 0.458 −44 0.392 −52
Upper Level Schooling 0.018 0.041 123 0.053 193 0.065 256
Inverse Life Expectancy −0.292 −0.752 157 −0.762 160 −0.780 167
Log Fertility −0.091 −0.237 161 −0.299 229 −0.306 237
Govt. Consump. Ratio −0.046 −0.072 55 −0.065 41 −0.067 44
Rule of Law Index 0.021 0.002 −91 0.019 −6 0.030 43
Democracy Index 0.519 −0.112 −122 −0.057 −111 0.009 −98
Democracy-squared −0.528 0.079 −115 0.110 −121 0.111 −121
Trade Openness 0.080 0.158 97 0.185 130 0.183 128
Terms of Trade Ratio 0.055 −0.051 −192 −0.048 −186 −0.047 −185
Investment Ratio 0.010 0.015 50 0.015 50 0.015 51
Inflation Rate −0.022 −0.022 3 −0.021 −2 −0.020 −5
Avg. Abs. Bias 100 106 116

mator in that it also weighs the between and within variations in the data. However, in
contrast to RE, the SUR estimator does not assume the within-country correlation in the
error term to be the same across subsequent time periods, but instead allows it to vary.
For example, the covariance between εi1 and εi2 is allowed to differ from the covariance
between εi2 and εi3. Thus, we can refer to the SUR estimator as a flexible RE estimator,
as the residual covariance matrix is less restrictive. This is expected to lead to efficiency
gains. Moreover, the weighing of the between and within variations will now differ from
the RE weighing scheme, and be a complicated function of the variance of the fixed-effects,
the variance of the error term µi + νi t and its autocorrelation structure. Thus, the bias
properties of SUR may differ from those of random effects if the country-specific effects
are correlated with the regressors, since it will weigh the within and between variations
differently.

Results in Table 12 show that the estimates are not very different from RE (for the sake
of comparison Table 12 also includes the RE results already presented in Table 4), but SUR
does better overall than RE across values of F . For example, the convergence coefficient γ4

displays a bias of −3% with SUR and −16% with RE when F = 10%. In fact, SUR overall
is the best estimator when it comes to estimating the speed of convergence λ. In terms of
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Table 12 Simulation results for alternative estimators: 1000 runs, residual correlation=25%

Error-to-truth ratio: True Coefs F = 5% F = 10% F = 15%

Variable Mean Bias (%) Mean Bias (%) Mean Bias (%)

Random effects

log sk,i t−τ 0.099 0.337 241 0.210 113 0.235 138

log sh,i t−τ 0.099 0.412 317 0.326 231 0.359 264

log(n + g + δ)i t−τ −0.197 −2.636 1236 −1.401 610 −1.705 764

log yit−τ 0.832 0.453 −46 0.701 −16 0.642 −23

Avg. Abs. Bias 460 242 297

Implied λ 3.68% 0.158 330 0.071 93 0.089 141

SUR (flexible random effects)

log sk,i t−τ 0.099 0.134 36 0.165 67 0.183 86

log sh,i t−τ 0.099 0.212 115 0.250 153 0.275 179

log(n + g + δ)i t−τ −0.197 −0.520 163 −0.887 350 −1.140 478

log yit−τ 0.832 0.867 4 0.803 −3 0.754 −9

Avg. Abs. Bias 80 143 188

Implied λ 3.68% 0.029 −22 0.044 19 0.056 53

Between

log sk,i t−τ 0.099 0.073 −26 0.077 −22 0.075 −23

log sh,i t−τ 0.099 0.086 −12 0.105 6 0.101 2

log(n + g + δ)i t−τ −0.197 −0.036 −82 −0.026 −87 −0.019 −91

log yit−τ 0.832 1.019 23 0.995 20 1.000 20

Avg. Abs. Bias 36 34 34

Implied λ 3.68% −0.004 −110 0.001 −97 0.000 −100

Mankiw–Romer–Weil (modified between)a

log sk,i t−τ 0.452 0.606 34 0.612 35 0.617 36

log sh,i t−τ 0.452 0.939 108 0.922 104 0.914 102

log(n + g + δ)i t−τ −0.905 −0.784 −13 −0.775 −14 −0.697 −23

log yit−τ 0.229 0.727 217 0.773 237 0.808 252

Avg. Abs. Bias 93 98 103

Implied λ 3.68% 0.008 −78 0.006 −83 0.005 −86

a MRW true coefficients adjusted with τ = 40 instead of τ = 5 to ensure comparability of the point estimates
with the other estimators

average absolute bias, SUR does better than RE whatever the level of measurement error.
Both estimators do particularly well in estimating the speed of convergence, but both tend to
greatly bias away from zero the estimates on steady-state determinants.

4.6.2 The Mankiw, Romer and Weil estimator

The BE estimator does not strictly correspond to the cross-sectional estimator often used in
the cross-country growth literature. Indeed, it involves the time averaging of all variables,
including the income term on the left-hand side and lagged income on the right-hand side.
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In contrast, cross-sectional estimators in the class of MRW’s OLS estimator are based on the
following regression:

log yi,2000 = γ0 + γ1log sk,i + γ2log sh,i + γ3log (n + g + δ)i + γ4 log yi,1960 + ϑi t (21)

where the bar denotes averages computed over the whole period. Contrary to the BE estima-
tor, income enters as end and beginning of period values (our total period spans 1960–2000),
so measurement error in the initial income term does not get averaged away.46

Table 12 displays the simulation results. For comparability, we also reproduce the BE
results from Table 4. The MRW and BE biases are very similar in terms of magnitudes and
signs. However, BE does better than MRW in terms of average absolute bias across values
of F . These results confirm that simple OLS cross-sectional estimators are best at limiting
net overall bias resulting from heterogeneity and measurement error.

5 Conclusion

In this paper, we performed Monte Carlo simulations to evaluate the econometric methods
commonly used to estimate growth regressions. Our results suggest that, in the presence of
measurement error, the fixed-effects estimator and the Arellano–Bond GMM estimator lead
to overestimating the speed of convergence and to underestimating the impact of several
common determinants of the steady-state level of income, such as human capital. The Blun-
dell–Bond system GMM estimator corrects for some of theses deficiencies, but suffers from
a violation of some of its moment conditions, leading to some bias. Simple OLS on variables
averaged over time provides a closer estimate of the speed of convergence, but overestimates
the magnitude of the effect of steady-state determinants. These findings were shown to be
robust to several changes in the design of the simulations.

Until now, differences in speeds of convergence across estimators were interpreted as
implying that heterogeneity bias was prevalent in cross-sectional growth regressions, since
fixed-effects methods led to a speed of convergence roughly 5 times higher than that esti-
mated using a between estimator. This paper shows instead that the difference in estimated
convergence speeds is likely attributable to the different incidence of measurement error bias.
The estimated speed from traditional cross-sectional regressions is in all likelihood closer to
the correct speed of convergence. The role of physical and human capital accumulation is also
greater and the role of technological differences smaller than fixed-effects estimates would
lead to believe. We opened this paper by contrasting two sets of results: First, we described
cross-sectional estimates, which initiated a neoclassical revival in growth empirics. Second,
we surveyed panel estimates emphasizing the role of technology as the main source of growth
differences. Our simulations lead us to fall on the side of the first set of results.

Of course, simulations can only characterize the properties of the estimators. They cannot
inform us as to the actual speed of convergence or the impact of steady-state determinants,
since we simulated our data by assuming values for these parameters implied by a strict
application of the Solow model. This strict application led to postulated parameters that
may or may not hold true in actual data. Another weakness of our approach is that, under
the assumptions we made concerning the data generating process, none of the estimators
that we considered (i.e. none of the estimators currently used in the literature) allow us to
exactly identify the parameters of interest. What our simulations do suggest is that if we

46 In this application τ is set to 40, requiring a correction to ensure the comparability of the estimated reduced
form coefficients with BE estimates.
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Table 13 Growth regressions on actual data—dependent variable: log per capita income—1960 to 1999a

(1) (2) (2′) (3) (4) (5) (6) (7)

BE MRW MRW adj.b RE SUR FE AB BB

log sk,i t−τ 0.058 0.382 0.062 0.065 0.066 0.062 0.072 0.085

(0.016)** (0.104)** (0.012)** (0.011)** (0.017)** (0.024)** (0.016)**

log sh,i t−τ 0.041 0.405 0.066 0.040 0.038 −0.028 −0.060 0.025

(0.014)** (0.085)** (0.011)** (0.010)** (0.020) (0.033)* (0.016)

log(n + g + δ)i t−τ −0.214 −2.173 −0.355 −0.385 −0.284 −0.421 −0.085 −0.617

(0.111)* (0.734)** (0.091)** (0.078)** (0.153)** (0.217) (0.157)**

log yit−τ 0.960 0.523 0.922 0.940 0.948 0.796 0.795 0.944

(0.014)** (0.078)** (0.011)** (0.010)** (0.026)** (0.042)** (0.018)**

# of observations − − − 552 552 552 414 483

Number of 69 69 69 69 69 69 69 69
countries

Implied λ 0.82 1.62 1.62 1.24 1.07 4.56 4.59 1.15

Standard errors in parentheses
* Significant at 10%; ** Significant at 1%
All regressions include time effects (except columns 1 and 2). Regressions include a constant term (not
reported), where applicable.
a Income at the end of each 5-year period in all but columns 2 and 2′, where the dependent variable is income
in 1999.
b MRW estimates adjusted with τ = 5 instead of τ = 40 to ensure comparability of the point estimates with
the other columns

wish to control for the log Ai (0) term found in the Solow model, a panel data estimator that
uses only within-country variation is not the way to go. A much better strategy is to use a
cross-sectional estimator and add relevant covariates reflecting log Ai (0).

Nonetheless, our results about relative biases can be used to establish which set of esti-
mates is likely to be closest to the truth when using real data. Table 13 displays the results
from estimating our basic specification using PWT version 6.1 data and updated series for
the secondary school enrollment rate from Barro and Lee. We are able to replicate the basic
findings of the past literature in this data: the speed of convergence is roughly 5 times larger
under FE and AB (respectively 4.6% and 5.3%) compared to BE (0.8%). Our simulation
results suggest the latter number is likely to be much closer to the truth. All the other esti-
mators, that do not isolate the within variation in the data (namely MRW, SUR and RE)
lead to estimated speeds of convergence that lie between 0.8% and 1.6%, while FE and AB
lead to estimates in the neighborhood of 5%.47 The slope parameters on the determinants
of the steady-state level of income are reduced in magnitude when using FE or the AB
estimator. They are similar across estimators using at least some between variation in the
data (BE, SUR, RE and MRW). For example, the impact of the log of the enrollment rate

47 The speed of convergence we report based on the application of the BE estimator, less than 1%, falls short
of the number typically reported in the cross-sectional literature. Barro and Sala-i-Martin (1995) cite a number
closer to 2%, based on the previous version of PWT. This difference is not attributable to our use of new
and extended data. Past cross-sectional estimates rely on an OLS specification closer to the MRW estimator
described above, where the current and lagged income terms do not get averaged over time. Implementing
this estimator, we obtain a convergence speed of 1.62%, closer to existing estimates. Given that BE and MRW
somewhat understate the speed of convergence, a number in the neighborhood of 2% for λ does not seem
unreasonable.
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is equal to 0.04 using the BE estimator, and is significant at the 1% level. As in Islam,
this estimate switches signs (to −0.03) when using the FE estimator, and is statistically
insignificant.

Running Monte Carlo simulations required that we take the Solow model seriously. How-
ever, we allowed for a very rich data generating process as the basis for the simulations.
In particular, we explictly modeled the dynamic nature of the Solow model, we allowed
for measurement error, cross-country heterogeneity, as well as endogenous regressors in
the baseline simulations. In extensions, we allowed for complex specifications of measure-
ment error, alternative underlying models for generating the country fixed effects and the
residuals, alternative parameter values in the growth specification, and an alternative growth
specification altogether. Our basic findings were remarkably robust to allowing for these
complexities, suggesting that the findings of this paper may have implications beyond the
narrow confines of the Solow model. This paper illustrates an econometric second best prop-
erty: by addressing one source of bias (stemming from omitted variables or reverse causality),
the application of a certain class of estimators makes another source worse (measurement
error).
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Appendix 1: Limiting values of the between, fixed-effects and random effects
estimators

This appendix derives the limiting values of the BE, FE and RE estimators in the multivariate
case. As in the text, assume that the true model is:

log yit = γ ′xit + µi + εi t (22)

where all these variables are as defined in Sect. 2. As in Sect. 2.3, we also abstract from the
dynamic nature of the model (i.e. assume plim X ′ε = 0).

Assume also that xit is imperfectly measured. Instead of observing xit , we can only
see x∗

i t = xit + dit , where E [dit |xit ] = 0 for all observations and var [dit |xit ] = D =
diag

{
σ 2

d1
, σ 2

d2
, . . . , σ 2

dk

}
. The unconditional expectations and unconditional variance for

three variables of interest appear in the main text as Eqs. 9 and 10.
In order to analyze the properties of the BE and FE estimators further, it is useful to

break down the variation on each variable into within-country variation and between-country
variation. Define the between-country variance for xit as:


B
xx ≡ E

[(
1

T

T∑

t=1

xit

) (
1

T

T∑

t=1

x ′
i t

)]

− E

(
1

T

T∑

t=1

xit

)

E

(
1

T

T∑

t=1

x ′
i t

)

(23)
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and the within-country variance to be:


W
xx ≡ E

[(

xit − 1

T

T∑

t=1

xit

) (

x ′
i t − 1

T

T∑

t=1

x ′
i t

)]

−E

[

xit − 1

T

T∑

t=1

xit

]

E

[

x ′
i t − 1

T

T∑

t=1

x ′
i t

]

(24)

It is well-known that:


xx = 
W
xx + 
B

xx (25)

It is also easy to show that, for the covariance between xit and µ, 
µx = 
B
µx . Finally, 
B

xx∗ ,
the between covariance matrix of the imperfectly observed data x∗, is defined as:


B
xx∗ ≡ E

[(
1

T

T∑

t=1

xit + dit

) (
1

T

T∑

t=1

x ′
i t + d ′

i t

)

− E [xit + dit ] E
[
x ′

i t + d ′
i t

]
]

= 
B
xx + 1

T
D (26)

It is also easy to show that:


W
xx∗ = 
W

xx + T − 1

T
D (27)

We are now ready to derive the plims of the BE and FE estimators in the presence of mea-
surement error and in the multivariate case.

First consider the BE estimator (OLS on country means across time). Using standard OLS
results, we can derive:

plim γ̂ B E =
(


B
xx + 1

T
D

)−1


B
xxγ +

(

B

xx + 1

T
D

)−1


µx (28)

Now consider FE. To eliminate the heterogeneity bias arising through the correlation between
the time invariant country-specific effects and the regressors, the most obvious solution is to
use the FE estimator. By the Frisch-Waugh theorem, we can show that:

γ̂ F E = (
X∗′Mc X∗)−1

X∗′Mc y (29)

where

Mc = I − C
(
C ′C

)−1
C ′ (30)

and C is an (N T × N ) matrix that stacks dummy variables for the different countries (with
subvectors of T ones along the diagonals, zero elsewhere). Then:

plim γ̂ F E =
(


W
xx + T − 1

T
D

)−1


W
xxγ (31)

Finally, as is well-known, RE is simply a matrix-weighted average of BE and FE estimates:

γ̂ RE =
(

̂W

xx∗ + θ̂ 
̂B
xx∗

)−1 (

̂W

xx∗ γ̂ F E + θ̂ 
̂B
xx∗ γ̂ B E

)
(32)
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where 
̂W
xx∗ and 
̂B

xx∗ are the sample estimates of 
W
xx∗ and 
B

xx∗ , respectively, and θ̂ is an
estimate of θ where:

θ = σ 2
ε

T σ 2
µ + σ 2

ε

(33)

i.e. θ is the weights given to the BE estimator. Then:

plim γ̂ RE =
[(


W
xx + T − 1

T
D

)
+ θ

(

B

xx + 1

T
D

)]−1

×
[(


W
xx + T − 1

T
D

)
γ F E + θ

(

B

xx + 1

T
D

)
γ B E

]
(34)

Note that when the variance of the error term εi t is zero, RE reduces to FE.

Appendix 2: A simple univariate example

To illustrate the effects at play in the presence of both heterogeneity bias and measurement
error, we consider the case where xit is unidimensional, and contrast estimation by pooled
OLS and FE. Consider the following relationship with a single observed regressor and an
intercept term:

log yit = γ0 + γ1xit + µi + εi t (35)

Suppose that the observed variable x∗
i t incorporates measurement error:

x∗
i t = xit + dit (36)

where dit is independent of the true xit . The variance of the measurement error and of xit

are, respectively, σ 2
d and σ 2

x .
By estimating (35) using pooled OLS, we get both an omitted variables bias due to the fact

that µi is potentially correlated with xit , and a measurement error bias due to the correlation
between εi t and x∗

i t . The limiting value of the pooled OLS estimate of γ1 is as follows:

plim γ̂ P O L S
1 = γ1

1 + σ 2
d

σ 2
x

+ cov(xit , µi )

σ 2
x + σ 2

d

(37)

In Eq. 37, the two sources of bias appear clearly. The variance of measurement error con-
tributes to lessen the extent of heterogeneity bias, as it appears in the denominator of the
expression on the right hand side of (37).

Consider now FE estimation, still in the univariate case. To simplify things and without
loss of generality, assume that we difference away the time invariant individual effects by
taking first differences, rather than by taking differences from country means of the data.
The limiting value of the FE estimate of γ1 is then:

plim γ̂ F E
1 = γ1

1 + σ 2
�d

σ 2
�x

(38)

where σ 2
�d is the variance of the first differenced measurement error, and σ 2

�x is the same for
the “true” regressor xit .

We have derived formal expressions for our estimate of interest in two cases. The second
method, FE, allows us to remove the heterogeneity bias but will exacerbate measurement
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error bias. To see why, note that the error-to-truth ratio in the denominator of Eq. 38 will
always have increased compared to that under pooled OLS:

σ 2
�d = vardit + vardit−τ − 2cov(dit , dit−τ ) = 2σ 2

d (39)

σ 2
�x = varxit + varxit−τ − 2cov(xit , xit−τ ) = 2σ 2

x (1 − ρx ) (40)

where ρx = corr(xit , xit−τ ) is the autocorrelation of xit . Thus,

σ 2
�d

σ 2
�x

= σ 2
d

σ 2
x (1 − ρx )

>
σ 2

d

σ 2
x

(41)

In words, σ 2
�x will be smaller relative to σ 2

x the greater the time persistence in xit (i.e. the
higher is ρx ).

We have assumed until now that there was no time persistence in measurement error (i.e.
we had white noise errors-in-variables). This assumption is problematic in the context of
data used for growth regressions, where errors in measurement from one period are likely
to carry over to the next. In the case of autocorrelated measurement error, where we define
ρd = corr(dit , dit−τ ), the error-to-truth ratio under FE is:

σ 2
�d

σ 2
�x

= σ 2
d (1 − ρd)

σ 2
x (1 − ρx )

(42)

It is then easy to see that FE will exacerbate measurement error bias compared to pooled
OLS whenever ρd < ρx .
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