Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Combinatorial regulation of alternative splicing

Abstract

The generation of protein coding mRNAs from pre-mRNA is a fundamental biological process that is required for gene expression. Alternative pre-mRNA splicing is responsible for much of the transcriptomic and proteomic diversity observed in higher order eukaryotes. Aberrations that disrupt regular alternative splicing patterns are known to cause human diseases, including various cancers. Alternative splicing is a combinatorial process, meaning many factors affect which two splice sites are ligated together. The features that dictate exon inclusion are comprised of splice site strength, intron-exon architecture, RNA secondary structure, splicing regulatory elements, promoter use and transcription speed by RNA polymerase and the presence of post-transcriptional nucleotide modifications. A comprehensive view of all of the factors that influence alternative splicing decisions is necessary to predict splicing outcomes and to understand the molecular basis of disease. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View