Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Tracing the movement of electronic cigarette flavor chemicals and nicotine from refill fluids to aerosol, lungs, exhale, and the environment

Abstract

Background

Given the high concentrations of nicotine and flavor chemicals in EC (electronic cigarette) fluids, it is important to determine how efficiently they transfer to aerosols, how well they are retained by users (exposure), and if they are exhaled into the environment where they settle of surfaces forming ECEAR (EC exhaled aerosol residue).

Objectives

To quantify the flavor chemicals and nicotine in refill fluids, inhaled aerosols, and exhaled aerosols. Then deduce their retention and contribution to ECEAR.

Methods

Flavor chemicals and nicotine were identified and quantified by GC-MS in two refill fluids, smoking machine-generated aerosols, and aerosols exhaled by 10 human participants (average age 21; 7 males). Machine generated aerosols were made with varying puff durations and two wattages (40 and 80). Participants generated exhale ad libitum; their exhale was quantified, and chemical retention and contribution to ECEAR was modeled.

Results

"Dewberry Cream" had five dominant (≥1 mg/mL) flavor chemicals (maltol, ethyl maltol, vanillin, ethyl vanillin, furaneol), while "Cinnamon Roll" had one (cinnamaldehyde). Nicotine transferred well to aerosols irrespective of topography; however, transfer efficiencies of flavor chemicals depended on the chemical, puff volume, puff duration, pump head, and EC power. Participants could be classified as "mouth inhalers" or "lung inhalers" based on their exhale of flavor chemicals and nicotine and retention. Lung inhalers had high retention and exhaled low concentrations of EC chemicals. Only mouth inhalers exhaled sufficient concentrations of flavor chemicals/nicotine to contribute to chemical deposition on environmental surfaces (ECEAR).

Conclusion

These data help distinguish two types of EC users, add to our knowledge of chemical exposure during vaping, and provide information useful in regulating EC use.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View