Skip to main content
eScholarship
Open Access Publications from the University of California

Environmental influences on autocollimator-based angle and form metrology

Published Web Location

https://doi.org/10.1063/1.5057402
Abstract

Deflectometric profilometers are indispensable tools for the precision form measurement of beam-shaping optics of synchrotrons and x-ray free electron lasers. They are used in metrology labs for x-ray optics worldwide and are crucial for providing measurement accuracy dictated by the form tolerances for modern state-of-the-art x-ray optics. Deflectometric profilometers use surface slope (angle) to assess form, and they utilize commercial autocollimators for the contactless slope measurement. In this contribution, we discuss the influences of environmental parameters, such as temperature and air pressure, including their gradients, on high-accuracy metrology with autocollimators in profilometers. They can cause substantial systematic errors in form measurement, especially in the case of large and strongly curved optical surfaces of high dynamic range. Relative angle and form measuring errors of the order of 10-4 are to be expected. We characterize environmental influences by extended theoretical and experimental investigations and derive strategies for correcting them. We also discuss the possibility to minimize the contributions of some errors by the application of sophisticated experimental arrangements and methods. This work aims at approaching fundamental limits in autocollimator-based slope and form metrology.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View