- Main
Method-independent cusps for atomic orbitals in quantum Monte Carlo
Abstract
We present an approach for augmenting Gaussian atomic orbitals with correct nuclear cusps. Like the atomic orbital basis set itself and unlike previous cusp corrections, this approach is independent of the many-body method used to prepare wave functions for quantum Monte Carlo. Once the basis set and molecular geometry are specified, the cusp-corrected atomic orbitals are uniquely specified, regardless of which density functionals, quantum chemistry methods, or subsequent variational Monte Carlo optimizations are employed. We analyze the statistical improvement offered by these cusps in a number of molecules and find them to offer similar advantages as molecular-orbital-based approaches while remaining independent of the choice of many-body method.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-