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Method–independent cusps for atomic orbitals in quantum Monte Carlo
Trine Kay Quady†,1 Sonja Bumann†,1, 2 and Eric Neuscamman1, 2

1)Department of Chemistry, University of California, Berkeley, California 94720, USA
2)Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
USA

(*Electronic mail: eneuscamman@berkeley.edu)

(Dated: 6 December 2024)

We present an approach for augmenting Gaussian atomic orbitals with correct nuclear cusps. Like the atomic orbital
basis set itself, and unlike previous cusp corrections, this approach is independent of the many-body method used to
prepare wave functions for quantum Monte Carlo. Once the basis set and molecular geometry are specified, the cusp-
corrected atomic orbitals are uniquely specified, regardless of which density functionals, quantum chemistry methods,
or subsequent variational Monte Carlo optimizations are employed. We analyze the statistical improvement offered by
these cusps in a number of molecules and find them to offer similar advantages as molecular-orbital-based approaches
while maintaining independence from the choice of many-body method.

I. INTRODUCTION

The choice of functions to include in the one-electron ba-
sis set is critical in electronic structure theory. In general, a
good basis set offers efficient numerical calculation, appro-
priate flexibility for the physics at hand, and a form that is
straightforwardly transferrable between molecules. In molec-
ular electronic structure, examples of important flexibility in-
clude the use of polarization functions to angularly resolve
molecular orbital (MO) features1 and the use of diffuse func-
tions to capture the physics of anions2 and Rydberg states.3

To achieve efficient calculation, quantum chemistry has long
relied on atom-centered Gaussian atomic orbital (AO) basis
sets, which greatly simplify the evaluation of key integrals.4

Thanks to their dependence on only the identities and posi-
tions of the nuclei, such Gaussian basis sets have proven read-
ily transferrable between different molecules. However, the
incorrect shape of Gaussian orbitals in the immediate vicin-
ity of the nucleus makes them less desirable in all-electron
real-space quantum Monte Carlo methods, whose accuracy
and efficiency rely on the hydrogenic divergence of kinetic
energy (KE) to counteract the diverging Coulomb energy at
the nucleus.5 Given the high accuracy offered by Monte Carlo
methods, a way to correct orbital shapes at nuclei that retains
the efficiency, flexibility, and transferability of the parent basis
set is highly desirable.

Variational Monte Carlo (VMC), for example, has proven
capable of delivering high accuracy in a number of contexts
that challenge more traditional approaches like density func-
tional theory (DFT) and ground state coupled cluster (CC).
These include charge transfer and doubly excited states,6,7

core excitations,8 thiophene,9 and the carbon dimer.10 Suc-
cess in these areas is largely due to VMC’s ability to combine
Jastrow factors with a configuration interaction expansion
carefully selected from quantum chemistry methods,9,11–17 al-
though much recent work has also investigated neural network
wave function forms that have proven particularly accurate in

† These authors contributed equally to this work.

small molecules.18–20 In both approaches, it can be useful and
sometimes critical to employ a quantum-chemistry-derived
initial guess for the molecular orbitals (MOs) and other wave
function components, and so the ability to interface effectively
with Gaussian basis sets is crucial.

The most widely used approach to make VMC compatible
with Gaussian basis sets and to deal with energy divergences
near nuclei more generally is to employ pseudopotentials, also
known as effective core potentials (ECPs).21–24 In these ap-
proaches, the core electrons are removed and the divergent
Coulomb potential near the nucleus is replaced with an effec-
tive potential designed to replicate the effect of the nucleus
and core electrons on the valence electrons. As pseudopo-
tentials lack Coulomb divergences, they remove the need for
the orbital basis to produce KE divergences, making VMC di-
rectly compatible with Gaussian basis sets. Furthermore, core
electrons typically make the largest contributions to VMC’s
energy variance, and so pseudopotentials also tend to re-
duce statistical uncertainty. They can also account for rela-
tivistic effects,25 which can improve the energy compared to
all-electron non-relativistic calculations on heavier atoms.26

However, despite these clear advantages, pseudopotentials re-
quire careful management of the localization error27–29 and
can be less accurate than all-electron calculations. For exam-
ple, Wang et al. found that all-electron calculations for first
row atoms outperformed those using pseudopotentials when
evaluating ionization potentials.26 More directly, pseudopo-
tentials cannot be used to study processes involving core elec-
trons, such as X-ray absorption spectroscopy.8 Thus, while
pseudopotentials are highly effective in many applications,
all-electron calculations remain preferred for some. In those
settings, electron-nuclear Coulomb divergences are present,
and Gaussian basis sets alone are no longer sufficient.

To avoid energy divergences in all-electron calculations, the
wave function must satisfy cusp conditions that ensure the KE
diverges in a way that cancels the Coulomb divergence as par-
ticles coalesce.30 In practice, electron-electron cusps are typi-
cally satisfied using Jastrow factors.31 Electron-nuclear cusps
can also be satisfied with Jastrow factors, but doing so often
makes wave function optimization more difficult.8,31 Alterna-
tively, electron-nuclear cusps can be incorporated directly into
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the orbitals. One widely used approach is to replace Gaussian
basis functions with a Slater-type orbital (STO) basis,32 which
by construction provide the necessary non-analytic features
for cusps. However, employing STOs makes communicating
with Gaussian-based quantum chemistry packages more dif-
ficult, and most do not support STOs directly (although there
are exceptions33). Furthermore, even if an individual STO
satisfies a particular cusp condition, linear combinations of
STOs with different exponents, necessary for constructing ac-
curate molecular orbitals, may not, which can further compli-
cate wave function optimization within VMC.

To maintain easy compatibility with Gaussian and plane
wave basis sets while achieving correct cusps at the nuclei,
multiple groups have taken the approach of adding cusps to
MOs that initially lack them.34–38 These approaches signif-
icantly lower the energy variance in VMC, and are directly
compatible with Gaussian-type orbitals (GTOs). However,
the precise outcomes of these MO-based approaches, along
with similar methods that add cusps to the electron density,39

depend on the shapes of the MOs and therefore on the many-
electron method (e.g. density functional) that was chosen that
produced them. This method dependence stands in sharp con-
trast to the situation for AO basis sets, whose transferability
stems in part from the fact that, once a basis is chosen, its
properties depend only on the molecular geometry. In order
to remove this method dependence while maintaining com-
patibility with the GTOs of quantum chemistry, we therefore
explore in the present study the effectiveness of adding cusps
directly to the AO basis functions themselves.

Specifically, we study an approach to constructing cusped
Gaussian AOs in which each AO is cusped at each nuclei. In
addition to making VMC’s orbital basis set independent of the
quantum chemistry method that supplies the initial wave func-
tion, it also ensures that the basis functions remain localized
in space, a property that helps avoid unnecessary orbital eval-
uation costs in larger systems. Further, as with cusped MO ap-
proaches, any linear combination of these basis functions will
also satisfy the nuclear cusps, simplifying the task of orbital
optimization within VMC. To begin, we will describe our the-
oretical approach and its instantiation in a lightweight open-
source software library, Cusping Gaussian Atomic Orbitals
with Slaters (CGAOWS). We then test the cusped AOs in a
collection of small molecules and analyze the results, finding
that the good performance of previous MO-based methods can
be maintained while simultaneously freeing the VMC orbital
basis from any dependence on the many-electron method used
to produce the initial MOs.

II. THEORY

For a wave function to obey Kato’s cusp condition30 as an
electron approaches nucleus I, it must satisfy

∂ ⟨Ψ⟩
∂ r

∣∣∣∣
r=0

=−ZI ⟨Ψ⟩r=0 (1)

where ⟨Ψ⟩ is the average value of the wave function on the
surface of the radius-r sphere centered on nucleus I.

If we wish the cusp condition in Eq. 1 be satisfied by the
Slater determinant, then one may equivalently express the
cusp condition in terms of the AOs χi within the linear com-
bination of atomic orbitals (LCAO) construction of each MO,
φa(r) = ∑i ciaχi(r).

∂ ⟨χi⟩
∂ r

∣∣∣∣
r=0

=−ZI ⟨χi⟩r=0 ∀ i, I (2)

If this equation is satisfied for all AO-nucleus pairs, including
in the tails of AOs centered on other nuclei, then the Slater
determinant of MOs will satisfy the original cusp condition.

To address GTOs’ failure to satisfy Eq. 2, we introduce a
modification that smoothly transitions from the original GTO
to a cusp-satisfying Slater-type function (cusped-STO) within
a cusp radius rc for each AO at each nuclear center. Any linear
combination of cusp-satisfying AOs will thus result in a sim-
ilarly cusp-corrected MO – as long as each AO is corrected
over all nuclei in which it has a non-negligible magnitude.
This approach (Fig. 1) (i) is MO-independent (ii) is indepen-
dent of the method used to construct the initial trial wave func-
tion (iii) accommodates GTO basis sets from quantum chem-
istry, and (iv) can be applied before starting the QMC calcu-
lation.

Within a radius rc sphere around each nucleus, we replace
each GTO basis function χn with a cusp-corrected basis func-
tion χ̃n that is defined within the rc sphere as

χ̃n(r) = (1−b(r))χn(r)+b(r)Q(r; q⃗nI) (3)

where r is the distance to the nuclei in question and b(r) is the
5th-order polynomial

b(r) = c1r5 + c2r4 + c3r3 + c4r2 + c5r+ c6 (4)

that gradually switches from the GTO at r = rc to the cusped-
STO, Q(r; q⃗), at r = 0. Outside the cusp radius, the original
GTO is left unchanged. For simplicity, and because we any-
ways want to disturb the original GTO as little as possible to
maintain the character of the original basis set, we constrain
the cusp radii so that the correction regions around differ-
ent nuclei do not overlap. The precise coefficients within the
switching function b(r) are chosen as c1 =−6/r5

c , c2 = 15/r4
c ,

c3 = −10/r3
c , c4 = 0, c5 = 0, and c6 = 1, in order to en-

sure that b(0) = 1, that b(rc) = 0, and that b′(0) = b′′(0) =
b′(rc) = b′′(rc) = 0. This choice makes the updated orbital’s
first and second derivatives continuous at r = rc and preserves
the cusped-STO’s satisfaction of the cusp condition at r = 0.
It also ensures that, at the r = 0 and r = rc boundaries, the KE
contribution is coming entirely from the STO or GTO, respec-
tively.

In Eq. 3, every AO is cusp-corrected around each nucleus
at which it has an appreciable magnitude, meaning a value
whose magnitude is at least 10−15 times greater than the or-
bital’s maximum magnitude. Thus, energy divergences are
handled for AOs at their own nucleus and at other nuclei,
as shown in Figs. 1c and 1d (note that the magnitude cutoff
means that we do not add cusps to p or d orbitals at their
own nuclei). An advantage to smoothly switching between
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FIG. 1. Visualization of the cusp corrected orbitals (χ̃(r)) from a
6-31G(d) basis evaluated through the H-O bond in methanol, where
H is the origin, see top right molecule. Cusp correction over H (O)
correspond to purple (orange). (a) H 1s orbital, (b) H 2s orbital or-
thogonalized against the 1s, (c) O 3px orbital, and (d) O 3dz2 . A
zoomed in view of the cusps on the tails of (c,d) are to the right of
their respective plots.

the GTO and a cusped-STO in the cusping region via a lin-
ear combination of the two is that the spherical asymmetry
about a nucleus in the tail of a GTO (Fig.1c,d) can be main-
tained within χ̃(r) such that the original GTO shape is not
too strongly altered. Meanwhile, the spherical symmetry of
the cusped-STO dominates near the nucleus and satisfies the
necessary cusp condition.

To construct the cusped-STO function Q(r) for a specific
GTO-nucleus pair, we begin with the overall goal that it sat-
isfy the cusp condition so that the KE will cancel the electron-
nuclear Coulomb divergence at the nucleus in question.

−1
2

∇2Q(r)
Q(r)

=
Z
r

(5)

A natural starting point is the hydrogenic 1s orbital for that
nucleus, and so we define an initial form Q(r; q0) for Q as

Q(r; q0) = q0 e−Zr (6)

in which the constant q0 controls how much the cusp correc-
tion feature sticks out from the original GTO (see Fig. 1). We

determine q0 for each GTO-nucleus pair by minimizing the
one-electron energy functional

Ẽ =
⟨χn|Ĥ|χn⟩−⟨χn|Ĥ|χn⟩r<rc + ⟨χ̃n|Ĥ|χ̃n⟩r<rc

⟨χn |χn⟩−⟨χn |χn⟩r<rc + ⟨χ̃n | χ̃n⟩r<rc

(7)

with the Broyden–Fletcher–Goldfarb–Shanno algorithm.40–43

In Eq. 7, the denominator accounts for the AO’s normaliza-
tion, Ĥ is the one-body Hamiltonian

Ĥ =−1
2

∇
2
e −∑

I

ZI

|⃗re − R⃗I |
(8)

for the electron e, and the r < rc subscript indicates that the
integrals within the indicated expectation values are truncated
to the region of space within the radius rc sphere about the
nucleus in question. Essentially, these one-electron optimiza-
tions choose the q0 value for each GTO-nucleus pair that min-
imizes a simple approximation of the AO energy.

FIG. 2. Local energy (a.u.) (a) of the localized core carbon MO
in CH3OH, 6-31G(d) basis, as an electron nears the carbon nucleus
(r → 0) of the non-cusp corrected GTO (black dashed) and the cusp
corrected orbitals (solid colors) as a function of the indices included
in the Slater-like basis expansion of Eq. 9 (n). rc = 0.20 Bohr. (b)
Magnified plot of the cusp corrected AOs EL (a.u.) as a function of
n. (c) The contribution of the cusped orbital to the variance of the
local energy (σ2

EL
a.u.2) in the sphere around the carbon.

While this initial choice of Q = Q(r; q0) satisfies the cusp-
condition at r = 0, we find that it does a poor job of managing
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KE fluctuations in the intermediate region in between r = 0
and r = rc. We therefore generalize this initial choice by in-
cluding expanded radial flexibility in our final form for Q.

Q(r; q⃗) = q0 e−Zr +
M

∑
i=2

qi ri e−Zr (9)

Note that, while we include terms up to M = 7, we omit
the term linear in r, as its derivatives would interfere with
satisfying the cusp condition. We determine the coeffi-
cients q⃗ through variational optimization (H q⃗ = E S q⃗) within
the radius rc sphere around the nucleus. In this optimiza-
tion, we simplify even further, neglecting the space out-
side rc entirely and including only the kinetic energy and
the attraction to the nucleus in question. The Hamiltonian
and overlap matrices H and S are constructed in the basis
{(1− b(r))χn(r), b(r)e−Zrri; i = 0,2,3, . . .}, and the result-
ing lowest-energy eigenvector q⃗ is scaled so that the coeffi-
cient on the (1− b(r))χn(r) term of Eq. 3 equals one, which
ensures that the boundary conditions at rc remain satisfied.

In Fig. 2, we show how the local energy EL of the local-
ized 1s carbon MO in methanol behaves for different trunca-
tions in the order of M. A true energy eigenstate would have
a constant EL, and therefore zero-variance.44 The cusped or-
bital should ideally make EL finite everywhere and minimize
the amplitudes of the “wiggles” seen in the GTO’s EL in order
to both satisfy the central limit theorem and reduce the vari-
ance within a VMC calculation. Note that, for M ≥ 2, there
are larger fluctuations of EL near the origin but smaller fluc-
tuations in the remainder of the r < rc region. Since the prob-
ability of sampling very close to the nucleus (e.g. r < 0.02)
is much smaller than sampling in the remainder of the r < rc
region, this behavior is an expected trade off made by the vari-
ational optimization that should reduce the overall VMC en-
ergy variance. Indeed, by plotting the net contributions to the
variance at different radii (Fig. 2c), we see that this trade off
is exactly what is happening, although we also note that the
ability to reduce variance contributions near r = rc (rc = 0.2
in this example) is limited by the constraint that we match the
GTO at the boundary, limiting the final orbital quality there to
that of the original GTO.

The expansion with M = 7 (red, Fig. 2a,b) was chosen
for the final form of Q(r), as it most significantly decreases
the cusp region’s contribution to the energy variance σ2, as
demonstrated in Fig. 2c. Beyond M = 7, the basis functions
rapidly become linearly dependent, limiting the quality of the
optimization. In principle, one could adopt a different basis
in which the functions are orthogonal by construction (e.g.
Chebyshev polynomials), but, as we will see in the general
results, stopping at M = 7 is sufficient to produce results com-
parable to previous MO-based cusping schemes.

In our cusping package, CGAOWS, we have chosen spe-
cific cusp radii for all nuclei up to Z = 10 so that the cusp cor-
rections do not overlap and do not disturb the original GTO
shapes more than necessary, so as to retain as closely as pos-
sible the character of the original basis. Our choices were
guided by using methanol as a test case, in which we sought
to find a balance between variance and average EL reduc-
tion while maintaining generalizability across the various AO

and Z combinations. The default cusp radius for s orbitals is
rc = 0.2 Bohr, except in the case of a hydrogen s orbital being
cusped at a hydrogen nucleus, in which case rc = 0.1 Bohr.
For p or d orbitals, the default is rc = 0.075 Bohr. These
parameters were chosen given that they produce a satisfac-
tory reduction in the variance, however, further optimization
is possible. They can be readily tuned within the software for
specific molecular systems and basis sets if desired.

Finally, in order to increase the efficacy of the chosen cusp
radii, we redefine s orbital GTOs with principle quantum
number 2 or higher by Gram-Schmidt orthogonalizing them
against their corresponding 1s orbital. Note that this does not
change the span of the basis set, but it does produce more
uniformity in the shapes of GTO s orbitals near their centers,
making a one-size-fits-all cusp radius for s orbitals more ef-
fective. An example of this approach is seen in Fig. 1b, where
the r = 0 behavior of the 2s basis function has been made sim-
ilar to that of the 1s function via orthogonalization. Note that,
as seen in Figs. 1c and 1d, we do not orthogonalize against
other nuclei’s 1s orbitals when adding cusps for those nuclei,
as this would decrease the locality of the basis functions. Hap-
pily, we find that the default cusp radius, along with the opti-
mization of Q(r), produces good results for those cusps. For
an s orbital’s own nucleus, however, we perform the orthogo-
nalization as we find that it significantly improves the quality
of the results. Of course, when importing initial MOs from
quantum chemistry into VMC, the LCAO coefficient matrix
must be updated to reflect this redefinition of higher principle
quantum number s basis functions.

III. RESULTS

The performance of the presented cusping scheme is tested
using a restricted single Slater determinant trial wave func-
tion constructed with Foster-Boys45 localized Hartree-Fock
orbitals from PYSCF46–48 and a 6-31G(d) Pople basis set.49

By using a single Slater wave function without a Jastrow fac-
tor, all benefit in variance reduction may be attributed to the
cusp-correction. All VMC calculations from this work were
performed on molecular geometries optimized at the MP2/6-
31G(d) level of theory.50 As tests cases, neon (Fig. 3) and
methanol (Fig. 4) are used to demonstrate the impact of this
cusp correction scheme on atomic and molecular systems, re-
spectively, by evaluating EL as an electron “walks” across the
nucleus. Following this, results on a test set of 16 small gas
phase molecules are presented in Tables I and II; the former
containing statistical analysis assuming normally-distributed
data (i.e. mean energy and variance) and the latter assuming
non-normally distributed data (i.e. median energy, interquar-
tile range, and range). Four of the molecules in this test set in-
cluding LiH, C2H6, N2, and CO2, chosen based on data avail-
ability, are compared against other relevant cusping schemes
in Table I. All VMC calculations from this work were com-
puted using our own VMC software, augmented by the newly
developed CGAOWS package. For details about the soft-
ware, see the SI.
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FIG. 3. Local energy (a.u.) of single Slater determinant wave func-
tion, no Jastrow factor, as an electron “walks” across the nucleus of a
neon atom, in a 6-31G(d) basis. rc = 0.2 Bohr for all AOs, the shaded
area outside of |r| > rc indicates region of no cusp-correction. (a)
Uncusped GTO basis (black dashed) and cusp-corrected basis (black
solid). (b) Magnified EL of the cusp-corrected basis.

a. Neon and Methanol

As an initial demonstration of the presented cusping
scheme, Fig. 3 depicts EL of the Ne atom as an electron is
moved through the nucleus, holding all other electrons fixed.
An initial VMC calculation, with appropriate burn-in, was
performed to produce an electron configuration distributed
with respect to the wave functions probability distribution.
The alpha spin electron closest to the nucleus was then repo-
sitioned to move through the nucleus along the x-axis. Fig. 3
compares both the uncusped- (dashed line) and cusped- (solid
line) GTO bases. While the details of the fluctuations in EL
for both cases depend on the positions of the other electrons,
the general behavior is consistent when other configurations
are put through the same test. Note, outside of neon’s cusp
radius of 0.2 Bohr the cusped-GTO and GTO appear to return
to evaluating the same orbital, however, in actuality there is
a slight, unobservable difference between the two. This dif-
ference is expected, as it is caused by other electrons residing
within the cusp radii of the atom in this particular configura-
tion of the electrons, as would be expected in atomic or molec-
ular systems.

As expected, the GTO basis yields significant oscillations
and a divergence of EL as the electron nears the nucleus. In the
cusped-GTO basis, these oscillations are dramatically reduced
and EL remains finite everywhere. This result closely resem-
bles the behavior of the MO-based cusping scheme shown in
Fig. 4 of Ma et al.34 The remaining subtle “wiggles” visible in
the cusped-GTO case (Fig. 3b) are a byproduct of the choice
of polynomial switching function in Eq. 4 that controls the
interpolation between the pure GTO and the cusped-STO of
Eq. 9. Two paths could be taken to further reduce the re-
maining fluctuations in EL near the nucleus. First, a higher-
order polynomial expansion, using an orthogonal construc-

FIG. 4. Local energy (a.u.) of single Slater determinant wave func-
tion, no Jastrow factor, as an electron “walks” across the carbon nu-
cleus of methanol, see slice through molecule for the trajectory, in a
6-31G(d) basis. Light gray shading outside of |r| = 0.075 indicates
the cusp radii around the carbon nucleus for the oxygen atom’s p and
d orbitals. The dark gray shading outside of |r| = 0.2 indicates the
cusp radii around the carbon nucleus for all other basis functions.

tion to avoid linear dependency issues, could be employed.
Second, adding similar corrections to non-s basis functions in
the r < rc region, although not necessary to cancel any diver-
gences, would improve their kinetic energy behavior near the
nucleus. We forgo these steps in the present study, because the
M = 7 expansion applied only to s orbitals already achieves
reductions comparable to previous MO-based schemes.34

To verify that similar behavior is achieved in a molecular
system, where adding cusps for other nuclei in the tails of
each AO now matters, we perform a similar test in methanol.
Using the same procedure as in neon, Fig. 4 depicts EL as an
electron moves through the carbon nucleus. As in neon, we
see a large reduction in local energy fluctuations compared
to the original GTO basis. More significantly than neon, we
see for methanol a difference in the local energy values of
the cusped and uncusped results outside of the carbon atom’s
outermost cusp radius of 0.2 Bohr as well. Indeed, as one
looks at larger and larger molecules, the chances of sampling
a configuration in which none of the electrons lie within any
of the nuclei’s cusp radii becomes vanishingly small.

b. Standard test set of small molecules

We performed a series of calculations on 16 small organic
molecules taken from the dataset of Ma et al34 in order to
compare the performance of our AO-based scheme with ex-
isting MO-based approaches. As with all previous work to
which we compare here, calculations were performed without
a Jastrow factor in order to isolate the impact of the electron-
nuclear cusp correction on the calculations. In Table I, we re-
port the average energy and its variance for both the uncusped
and cusped cases, evaluating the uncertainty in each by as-
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TABLE I. Comparison of HF energies (EHF), VMC energies (EVMC) with and without electron-nuclear cusps, variances (σ2), and standard
errors (± following VMC results), all in a.u., for this work and work by Kussman et al.39, Ma et al.34, and Per et al.35 All results employed a
Hartree-Fock-based single Slater determinant with no Jastrow factor. See text for geometry, basis set, and sampling details.

Not cusp corrected Cusp corrected

Molecule EHF Mean EVMC σ2 Mean EVMC σ2 Variance reduction (%)

LiH This work -7.9808 -7.982 ± 0.001 8.3 ± 0.8 -7.9817 ± 0.0006 1.68 ± 0.02 79.81
Kussman -7.9809 -7.980 ± 0.001 7.14 ± 0.02 -7.9826 ± 0.0006 1.76 ± 0.01 75.35

Ma -7.9859 -7.984 ± 0.002 6.7 ± 0.9 -7.9864 ± 0.0005 1.64 ± 0.03 75.52
Per -7.9855 -7.9845 ± 0.0015 8 ± 2 -7.98536 ± 0.00049 1.607 ± 0.016 79.91

C2H6 This work -79.2280 -79.24 ± 0.02 275 ± 50 -79.231 ± 0.002 19.9 ± 0.3 92.78
Kussman -79.2285 -79.22 ± 0.01 214 ± 3 -79.237 ± 0.005 16.1 ± 0.4 92.48

Ma -79.2567 -79.24 ± 0.02 156 ± 31 -79.259 ± 0.002 18.0 ± 0.2 88.46
Per - - - - - -

N2 This work -108.9343 -108.95 ± 0.03 453 ± 90 -108.936 ± 0.004 28.4 ± 0.2 93.72
Kussman -108.9354 -108.9 ± 0.1 390 ± 8 -108.927 ± 0.006 25 ± 1 93.59

Ma -108.9710 -108.96 ± 0.02 308 ± 76 -108.973 ± 0.003 25.1 ± 0.3 91.85
Per -108.961 -108.912 ± 0.030 276 ± 76 -108.9677 ± 0.0033 24.76 ± 0.46 91.03

CO2 This work -187.6275 -187.62 ± 0.04 774 ± 231 -187.614 ± 0.005 53.0 ± 0.6 93.16
Kussman -187.6284 -187.60 ± 0.01 598 ± 9 -187.635 ± 0.009 45 ± 2 92.47

Ma -187.6880 -187.62 ± 0.02 348 ± 39 -187.691 ± 0.003 44.9 ± 0.5 87.10
Per - - - - - -

This work

Li2 - -14.8664 -14.869 ± 0.003 21 ± 4 -14.8676 ± 0.0009 3.18 ± 0.05 84.79
CH4 - -40.1947 -40.182 ± 0.008 82 ± 13 -40.1984 ± 0.0009 9.9 ± 0.1 87.85
C2H2 - -76.8149 -76.80 ± 0.01 198 ± 27 -76.820 ± 0.002 19.4 ± 0.7 90.20
C2H4 - -78.0306 -78.03 ± 0.02 227 ± 44 -78.030 ± 0.002 19.1 ± 0.2 91.60
HCN - -92.8693 -92.89 ± 0.01 398 ± 63 -92.870 ± 0.003 25 ± 1 93.82
NH3 - -56.1832 -56.17 ± 0.01 145 ± 19 -56.189 ± 0.003 15.5 ± 0.7 89.30
H2CO - -113.8629 -113.78 ± 0.02 248 ± 24 -113.858 ± 0.004 31.0 ± 0.4 87.51
CH3OH - -115.0331 -115.06 ± 0.03 646 ± 147 -115.038 ± 0.003 31.4 ± 0.7 95.14
H2O - -76.0084 -76.01 ± 0.02 204 ± 24 -76.006 ± 0.004 22.3 ± 0.5 89.09
H2O2 - -150.7577 -150.74 ± 0.06 581 ± 133 -150.744 ± 0.004 43.8 ± 0.5 92.46
O2 - -149.5187 -149.7 ± 0.2 8732 ± 8148 -149.512 ± 0.004 43.6 ± 0.8 99.50
HF - -100.0002 -99.97 ± 0.04 532 ± 200 -99.992 ± 0.003 32.5 ± 0.2 93.89

suming normal statistics. We should stress, however, that the
absence of a Jastrow factor means that electron-electron cusps
are missing, and so the local energy diverges when electrons
approach each other closely. This issue makes the quantities
in Table I difficult to interpret, as these divergences violate
the central limit theorem and lead to data that is not nor-
mally distributed. Indeed, a standard quantile-quantile anal-
ysis of our data revealed it to be non-normal with a signifi-
cant rightward skew, an effect that was even more pronounced
in the uncusped data where electron-nuclear divergences are
also present. Despite this issue, we begin with an analysis
based on the assumption of normal statistics in order to make
an apples-to-apples comparison to previous work. After this
comparison, we will present an analysis in which we make no
assumptions about normality.

In the first half of Table I, we compare our results for LiH,

C2H6, N2 and CO2 to Kussman et al.39, Ma et al.34, and Per
et al.35 (only for LiH and N2). Kussman et al. use the same 6-
31G(d) basis while Per et al. use a 6-311G(d) basis. Ma et al.
do not specify which basis they use for their small-molecule
analysis, but their reported HF energies suggest it is a larger
basis than either 6-31G(d) or 6-311G(d). These works also
employed varying amounts of statistical sampling. In this
work, energy and variance uncertainties are evaluated using
5 million total samples by treating the results of ten indepen-
dent 500,000-sample calculations as ten independent draws
from an unknown normal distribution. Kussman et al. used
500,000 total samples, Ma et al. used 250,000, and Per et al.
left precise sample numbers unspecified.

Overall, all four approaches provide similar variance re-
ductions compared to uncusped results. However, due to the
use of different basis sets and sampling efforts, and the fact
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FIG. 5. Local energies for 500,000 sample excerpts from (a) LiH
(b) C2H6 (c) N2 (d) CO2 (6-31G(d)). Left plot without cusps, right
with cusps. As there is no Jastrow factor, the remaining outliers af-
ter nuclear cusp corrections are applied are explained by the lack of
electron-electron cusps.

that none of these tests are expected to produce normally dis-
tributed data, it is not possible to say with precision which
schemes offer larger variance reductions in which molecules.
For example, Kussman et al. used the same basis set and
MP2/6-31G(d) reference geometries, yet the uncusped vari-
ance uncertainties they report are at least an order of mag-

TABLE II. Comparison of the median, interquartile range (IQR), and
total range of the local energy in a.u. in uncusped and cusped VMC
calculations for the 16 molecules studied in this work. The sample
size in each calculation is 5 million.

Not cusp corrected Cusp corrected

Molecule Median IQR Range Median IQR Range

LiH -8.159 0.984 1509 -8.192 0.923 256

C2H6 -79.663 4.997 7653 -79.913 3.982 1290

N2 -109.410 6.197 6999 -109.778 4.719 942

CO2 -188.180 9.308 11038 -188.717 6.770 1191

Li2 -15.126 1.508 4164 -15.183 1.345 313

CH4 -40.500 3.060 4306 -40.691 2.606 681

C2H2 -77.252 4.825 5837 -77.498 3.812 1522

C2H4 -78.466 4.916 7295 -78.712 3.898 1146

HCN -93.329 5.526 7254 -93.634 4.276 2543

NH3 -56.510 3.892 4385 -56.789 3.176 2042

H2CO -114.326 6.475 4981 -114.731 4.924 942

CH3OH -115.498 6.565 8653 -115.902 5.004 1416

H2O -76.353 4.893 3671 -76.749 3.829 1120

H2O2 -151.260 8.013 5467 -151.762 5.921 1367

O2 -150.028 7.912 45765 -150.543 5.815 2219

HF -100.376 6.073 12371 -100.846 4.687 1155

nitude smaller than ours. This difference appears to be due
to our larger sample size, which makes our tests much more
likely to encounter samples with near-divergent local energies
arising from electron-nuclear coalescence. Although this is-
sue makes uncertainties hard to interpret, the AO-based cusp-
ing scheme nonetheless shows very similar levels of variance
reduction as the MO-based approaches for the molecules that
are shared in common, and similarly large variance reductions
in the remaining molecules shown at the bottom of Table I.
In Fig. 5, we show detailed sampling data for the same four
molecules compared to other work in Table I in order to high-
light both the non-normality of the data and the degree to
which non-normality is reduced when electron-nuclear cusps
are added to the AOs. First, we note that the vertical axis scale
is in thousands of Hartree, which immediately makes clear
that, as expected, the data contains near-divergences due to
particle coalescence that are not consistent with a normal dis-
tribution. Second, we see that the addition of nuclear cusps in
the AOs dramatically reduces these near-divergences, but that
some still remain due to electron-electron coalescence. Thus,
on the one hand, we are reassured that the addition of electron-
nuclear cusps is helping a great deal, but, on the other hand,
we would prefer to augment the discussion above with mea-
sures of improvement that do not assume normally distributed
data.

To this purpose, Table II reports the median, interquartile
range, and total range of the local energy across all 5 mil-
lion samples for each molecule in our test set. In all cases,
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the local energy median and interquartile range decrease when
cusps are added to the AOs, indicating both a variational im-
provement in the energy and a reduction in the local energy’s
statistical spread that is consistent with the variance analysis
above. As for the near near-divergences seen in Fig. 5, these
can be quantified via the total range measure. By eliminating
electron-nuclear divergences, the AO cusp correction removes
the most negative divergences, but it has little to no impact
on the positive divergences related to electron-electron coa-
lescence. Thus, the total range is significantly reduced by the
AO cusps but remains large, as seen in Table II. Nonetheless,
these more general metrics all indicate that the expected sta-
tistical improvements, which were tentatively indicated by an
analysis assuming normal statistics, are indeed real.

IV. CONCLUSION

In conclusion, adding nuclear cusps directly to Gaussian
atomic orbitals offers similar advantages as molecular-orbital-
based cusping methods while maintaining independence from
the many-body method that generates the molecular orbitals
and other trial function parameters. In particular, we have
shown that an interpolation between the original Gaussian
type orbital and a Slater-based function with a low-order poly-
nomial radial function produces electron-nuclear cusps that
substantially improve the statistics in VMC evaluations. As
with other cusping schemes, the update to the atomic orbitals
can be applied cheaply before starting any QMC sampling.
For convenience, we have provided a lightweight standalone
library, CGAOWS, that provides code both for determining
the cusps and evaluating the resulting cusped atomic orbitals.
All told, this approach provides all-electron VMC with local
and transferrable atomic orbital basis sets that, being based on
those from quantum chemistry, interface easily with quantum
chemistry methods.

SUPPLEMENTARY INFORMATION

See Supplementary Information for electron positions used
in the case studies from Section III a and a description of the
CGAOWS software library.
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V. SUPPLEMENTARY INFORMATION

a. Electron Positions and Geometries for Nuclear Walk-Through Tests

TABLE S1. Coordinates of the frozen electrons in the neon walk-through test (see Figure 3 in the paper). The nucleus is centered at the origin.
A and B denote alpha and beta spin, respectively. A1 corresponds to the electron being walked through the nucleus. Coordinates are in Bohr.

Electron x y z
A1 – – –
A2 0.213553 −0.444243 0.278260
A3 −0.494929 0.584347 −0.265310
A4 0.372814 0.868481 −1.627833
A5 −0.900304 −1.472222 −1.127845
B1 −0.919444 −0.636217 −0.295044
B2 1.001112 0.185600 −0.238352
B3 −0.598423 −0.200966 0.797388
B4 −0.274741 0.465994 −0.980761
B5 0.062476 −0.088619 −0.033220

TABLE S2. Molecular geometry of methanol for walk-through test (see Figure 4 in the paper). Coordinates are in Bohr.

Z x y z
C −0.088460 1.259762 0.000000
O −0.088460 −1.434354 0.000000
H −2.060765 1.850028 0.000000
H 0.829924 2.030361 1.686264
H 0.829924 2.030361 −1.686264
H 1.639359 −1.994492 0.000000

TABLE S3. Coordinates of the frozen electrons in the methanol walk-through test (see Figure 4 in the paper). A and B denote alpha and beta
spin, respectively. A1 corresponds to the electron being walked through the carbon nucleus. Coordinates are in Bohr.

Electron x y z
A1 – – –
A2 0.106702 0.914076 0.381221
A3 0.763427 1.029360 0.300633
A4 −1.214422 1.824894 −0.535917
A5 −1.091921 1.072275 1.074244
A6 −0.398179 −1.133658 −0.590961
A7 −0.095003 −1.563129 −0.045628
A8 −0.126748 −1.720242 0.257205
A9 1.161947 −2.956023 −0.126195
B1 −0.222989 −0.861524 −0.514105
B2 1.083038 −0.238063 1.820019
B3 −0.179891 −1.328974 0.116196
B4 0.653737 −2.122696 −0.284307
B5 −1.353428 2.401788 1.105960
B6 −1.211755 −2.277452 −0.687876
B7 0.697330 1.929689 1.448539
B8 0.063754 1.337925 −0.142632
B9 −0.084558 0.904812 −1.026934

b. Cusping Gaussian Atomic Orbitals with Slaters (CGAOWS) Package

We provide an open-source C++ library that produces cusped atomic orbitals for a chosen molecular system and basis set
(currently limited to STO-3G, 6-31G, and 6-31G(d)). It can be found here: https://github.com/eneuscamman/cgaows. After the
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user specifies the molecular details in the input file, Python code is used to calculate the cusp parameters and molecular orbital
coefficient matrix that takes into account s-type orbital orthogonalization. These parameters are printed into txt files that are
subsequently read into the C++ code. We provide functions that evaluate the AOs for a given electron configuration as well as
the first and second orbital derivatives (cartesian) required for the evaluation of the kinetic energy. We include an example (Ne
atom/6-31G(d) basis set) of how the package can be integrated into a variational Monte Carlo code. See the code for further
details.
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