- Main
DRAMS: A tool to detect and re-align mixed-up samples for integrative studies of multi-omics data.
Published Web Location
https://doi.org/10.1371/journal.pcbi.1007522Abstract
Studies of complex disorders benefit from integrative analyses of multiple omics data. Yet, sample mix-ups frequently occur in multi-omics studies, weakening statistical power and risking false findings. Accurately aligning sample information, genotype, and corresponding omics data is critical for integrative analyses. We developed DRAMS (https://github.com/Yi-Jiang/DRAMS) to Detect and Re-Align Mixed-up Samples to address the sample mix-up problem. It uses a logistic regression model followed by a modified topological sorting algorithm to identify the potential true IDs based on data relationships of multi-omics. According to tests using simulated data, the more types of omics data used or the smaller the proportion of mix-ups, the better that DRAMS performs. Applying DRAMS to real data from the PsychENCODE BrainGVEX project, we detected and corrected 201 (12.5% of total data generated) mix-ups. Of the 21 mix-ups involving errors of racial identity, DRAMS re-assigned all data to the correct racial group in the 1000 Genomes project. In doing so, quantitative trait loci (QTL) (FDR<0.01) increased by an average of 1.62-fold. The use of DRAMS in multi-omics studies will strengthen statistical power of the study and improve quality of the results. Even though very limited studies have multi-omics data in place, we expect such data will increase quickly with the needs of DRAMS.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-