Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Learning Dynamics in Social Networks

Published Web Location

https://doi.org/10.3982/ecta18659
Abstract

This paper proposes a tractable model of Bayesian learning on large random networks where agents choose whether to adopt an innovation. We study the impact of the network structure on learning dynamics and product diffusion. In directed networks, all direct and indirect links contribute to agents' learning. In comparison, learning and welfare are lower in undirected networks and networks with cliques. In a rich class of networks, behavior is described by a small number of differential equations, making the model useful for empirical work.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View