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Learning Dynamics in Social Networks∗

Simon Board†and Moritz Meyer-ter-Vehn‡

June 3, 2021

Abstract

This paper proposes a tractable model of Bayesian learning on large random

networks where agents choose whether to adopt an innovation. We study the

impact of the network structure on learning dynamics and product diffusion. In

directed networks, all direct and indirect links contribute to agents’ learning. In

comparison, learning and welfare are lower in undirected networks and networks

with cliques. In a rich class of networks, behavior is described by a small number

of differential equations, making the model useful for empirical work.

1 Introduction

How do communities, organizations, or entire societies learn about innovations? Con-

sider consumers learning about a new brand of electric car from friends, farmers

learning about a novel crop from neighbors, or entrepreneurs learning about a source

of finance from nearby businesses. In all these instances agents learn from other’s
∗We have received useful comments from Ben Golub, Niccolo Lomys, Alessandro Pavan, Andy

Postlewaite, Klaus Schmidt, Bruno Strulovici, Fernando Vega-Redondo, Chen Zhao, and especially
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choices, so the diffusion of the innovation depends on the social network. One would

like to know: Do agents learn more quickly in a highly connected network? Do

products diffuse faster in a more clustered network?

This paper proposes a tractable Bayesian model to answer these questions, and

characterizes the diffusion of innovation in the social network via a system of dif-

ferential equations. In contrast to most papers in the literature (e.g. Acemoglu et

al., 2011), our results speak to learning dynamics at each point in time, rather than

focusing on long-run behavior. We thus recover the tractability of the reduced-form

models of diffusion (e.g. Bass, 1969) in a model of Bayesian learning. Understanding

the entire dynamics is important because empirical researchers must identify eco-

nomic models from finite data, and because in practice, governments and firms care

about when innovations take off, not just if they take off.

Our paper has two contributions. First, we describe how learning dynamics de-

pend on the network structure. For large random networks, we show that an agent

typically benefits when her neighbors have more links. However, additional links that

correlate the information of an agent’s neighbors or create feedback loops can muddle

her learning. For example, welfare is lower in a “clustered” network than in a ran-

dom “bilateral” network with the same degree distribution. These results can help

us understand how the diffusion of products and ideas changes with the introduction

of social media, differs between cities and villages, and is affected by government

programs that form new social links (e.g. Cai and Szeidl, 2018).

Our second contribution is methodological. The complexity of Bayesian updating

means that applied and empirical papers typically study heuristic behavior on the

exact network (e.g. Golub and Jackson (2012), Banerjee et al. (2013)). In compar-

ison, we take a “macroeconomic approach” by studying equilibrium behavior on an

approximate network. Figure 1 illustrates random networks exhibiting cliques and

homophily that we can analyze with low-dimensional ODEs. Given a “real life” net-

work, one can then study diffusion and learning on an approximate network with the

same network statistics (e.g. agents’ types, degree distributions, cluster coefficients).

In the model, agents are connected via an exogenous network. They may know the

entire network (our “deterministic” networks) or only their local neighborhood (our

“random” networks). An agent “enters” at a random time and considers a product
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Figure 1: Illustrative Networks. The left panel shows an Erdős-Rényi network; social learning
is described by a one-dimensional ODE, (13). The middle panel shows a random network with
triangles; social learning is described by a two-dimensional ODE, (18-19). The right panel shows a
random network with homophily; social learning is described by a four-dimensional ODE, (42).

whose quality is high or low. For example, a driver’s car breaks down, and she

contemplates buying a new brand of electric car. The agent observes which of her

neighbors has adopted the product and chooses whether to inspect the product at a

cost (e.g. via a test drive). Inspection perfectly reveals the common quality, and the

agent adopts the product if its quality is high.

The agent learns directly from her neighbors via their adoption decisions; she also

learns indirectly from further removed agents as their adoption decisions influence

her neighbors’ inspection (and adoption) decisions. The agent’s own inspection deci-

sion is thus based on the hypothesized inspection decisions of her neighbors, which

collectively generate her social learning curve (formally, the probability that at least

one of her neighbors adopts a high-quality product as a function of time). In turn,

her adoption decision feeds into the social learning curves of her neighbors.

In Section 2 we characterize agents’ adoption decisions via a system of ordinary

differential equations (ODEs). We start with some simple deterministic examples

(e.g. chains, complete networks) that can be characterized by one-dimensional ODEs.

These provide intuition and serve as building blocks for our large random networks.

For general networks, the dimension of this system is exponential in the number of

agents, since one must keep track of the joint adoption probabilities; e.g. if two agents

have a neighbor in common, their adoption decisions are correlated.

In Section 3 we turn to large random networks, where agents know their neighbors

but not their neighbors’ neighbors. Such incomplete information is both realistic and
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simplifies the analysis: the less agents know, the less they can condition on, and the

simpler their behavior. Formally, we model network formation via the configuration

model: Agents draw link-stubs that we randomly connect in pairs or triples. In the

limit economy with infinitely many agents, we characterize adoption behavior both

for directed networks with multiple types of agents (e.g. Twitter) and undirected

networks with cliques (e.g. Facebook) in terms of a low-dimensional system of ODEs.1

Intuitively, large networks locally resemble trees of elemental networks (e.g. links,

cliques), where information outside an element is independent. In such trees, it

suffices to keep track of adoption within each element, ignoring any correlation. We

validate our analysis by showing that equilibrium behavior in large finite networks

converges to the solution of these ODEs.

The ODEs allow for sharp comparative statics of social learning as a function of the

network structure. Given a mild condition on the hazard rate of inspection costs, an

agent’s adoption rate rises in her social information. Therefore, more neighbors lead

to more adoption, which leads to more information, which leads to more adoption,

and so on. Thus, an agent benefits from both direct and indirect links. However,

not all links are equally beneficial. We show that learning is superior in a bilateral

network than in a clustered network with the same degree distribution. Intuitively,

if i’s neighbors j and k observe one another, then j’s lack of adoption makes k more

pessimistic and raises the probability that neither of them adopts the product. We

also show that learning is superior in a directed network than in an undirected network

with the same degree distribution. Intuitively, i’s neighbor j cannot see i adopt prior

to the time i enters; thus the backward link j → i makes j more pessimistic, lowering

his adoption and i’s information, precisely when i needs to make a decision.

Finally, we connect our theory to prominent themes in the literature on learning

in networks. First, we extend the model to allow for correlation neglect (e.g. Eyster

and Rabin (2014)) and show that it reduces learning and welfare. Intuitively, agent i’s

mis-specification causes her to overestimate the chance of observing an adoption, and

means she grows overly pessimistic when none of her neighbors adopt; this reduces

i’s adoption and other agents’ social information. Second, we reconsider the classic
1The directed network with multiple types has one ODE per type. The undirected network with

cliques has one ODE per type of link (i.e. bilateral links and triangles).
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question of information aggregation (e.g. Smith and Sørensen (1996), Acemoglu et

al. (2011)) by letting the network and average degree grow large. When the network

remains sparse, agents aggregate information perfectly; yet when it becomes clustered,

information aggregation may fail. Thus, adding links may lower social welfare.

1.1 Literature

The literature on observational learning originates with the classic papers of Banerjee

(1992) and Bikhchandani et al. (1992). In these models, agents observe both a pri-

vate signal and the actions of all prior agents before making their decision. Smith and

Sørensen (2000) show that “asymptotic learning” arises if the likelihood ratio of signals

is unbounded. Smith and Sørensen (1996) and Acemoglu et al. (2011) dispense with

the assumption that agents observe all prior agents’ actions, and interpret the result-

ing observation structure as a social network. The latter paper generalizes Smith and

Sørensen’s (2000) asymptotic learning result to the case where agents are (indirectly)

connected to an unbounded number of other agents. Subsequent papers quantify the

amount of information aggregation when signals are bounded (e.g. Monzón and Rapp

(2014), Lobel and Sadler (2015)).

Our model departs from these papers in two ways. First, we study agents’ choice

of whether to inspect the good given their social information. In many applications,

such as buying an electric car, it seems natural that agents have to acquire information

about the good (via test drives and reviews) rather than being born with it. A few

recent papers have considered models of this flavor. Assuming agents observe all

predecessors, Mueller-Frank and Pai (2016) and Ali (2018) show asymptotic learning

is perfect if experimentation costs are unbounded below. Lomys (2019) reaches the

same conclusion in a network setting if the network is sufficiently connected. Like

Mueller-Frank and Pai (2016) and Lomys (2019), we assume that inspection reveals

quality perfectly.

Second, we study product adoption and assume that agents observe only the

adoption decisions of their neighbors, but not their entry times or inspection decisions.

This assumption is consistent with the classic observational learning model, and is

reasonable in many applications. For example, the above driver observes whether any
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neighbors drive the new electric car, but is unlikely to interrogate neighbors who drive

alternative cars why they did not adopt the new innovation. A number of papers have

analyzed related problems in complete networks. Guarino et al. (2011) suppose an

agent sees how many others have adopted the product, but not the timing of others’

actions or even her own action. Herrera and Hörner (2013) suppose an agent observes

who adopted and when they did so, but not who refrained from adopting. Hendricks

et al. (2012) suppose an agent knows the order in which others move, but sees only

the total number of adoptions; as in our model, the agent then uses this public

information to acquire information before making her purchasing decision. These

papers characterize asymptotic behavior and find an asymmetry in social learning:

good products may fail but bad products cannot succeed. In Section 4.1 we show a

similar result applies in our setting.2

These two complementary modeling choices allow us to characterize equilibria in

terms of simple social learning curves. Agents enter without private information, but

learn quality perfectly upon inspection. This cleanly separates the role of social in-

formation (which determines the inspection decision) and private information (which

determines the adoption decision). Additionally, agents do not observe when their

neighbors move and never see neighbors adopting low-quality goods. This further

simplifies the agent’s problem to a binary decision at a single information set: Should

an agent inspect when no neighbor has yet adopted?

Our contribution over the prior literature then lies in the questions we address.

Traditionally, herding papers ask whether society correctly aggregates information as

the number of agents grows. In their survey of observational learning models, Golub

and Sadler (2016) write: “A significant gap in our knowledge concerns short-run

dynamics [. . .] The complexity of Bayesian updating in a network makes this difficult,

but even limited results would offer a valuable contribution to the literature.” In
2There is a wider literature on product adoption without learning. There are “awareness” models

where agents become aware of the product when their neighbors adopt it. One can view Bass (1969)
as such a model with random matching; Campbell (2013) studies diffusion on a fixed network. There
are also models of “local network goods” where agents want to adopt the product if enough of their
neighbors adopt. Morris (2000) characterizes stable points in such a game. Sadler (2020) puts these
forces together and studies diffusion of a network good where agents become aware of it from their
neighbors. Banerjee (1993) and McAdams and Song (2020) integrate awareness and social learning,
allowing people to infer a good’s quality from the time at which they become aware of it.
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this paper we characterize such “short-run” learning dynamics in rich classes of social

networks that allow for homophily, clustering, and arbitrary degree distributions. We

then study how an agent’s information and welfare vary with the network structure.3

2 Model

The Network. A finite set of I agents is connected via an exogenous, directed

network G ⊆ I × I that represents who observes whom. If i (she) observes j (he), we

write i→ j or (i, j) ∈ G, say i is linked to j, and call j a neighbor of i. The set of i’s

neighbors is Ni(G). Agents may have incomplete information about the network. We

capture such information via finite signals ξi ∈ Ξi and a joint prior distribution over

networks and signal profiles µ(G, ξ). A random network is given by G = (I,Ξ, µ).

To be more concrete, we consider several special cases.

• Deterministic network G. Signal spaces are degenerate, |Ξi| = 1, and the prior

µ assigns probability one to G. While complete information might seem to sim-

plify matters, in fact learning dynamics become very complicated once we move

beyond the simplest networks G; this motivates us to study random networks

with incomplete information.

• Directed configuration model with finite types θ ∈ Θ. Agents draw types θ and

random stubs for each type θ′. We then randomly connect the type θ′ stubs to

type θ′ agents. Agents know how many outlinks of each type they have. For

example, Twitter users know what kind of other users they follow. We study

this model in Section 3.1.

• Undirected configuration model with binary links and triangles. Agents draw

d̄ binary stubs and d̂ pairs of triangle stubs. We then randomly connect binary

stubs in pairs, and pairs of triangle stubs in triples. Agents know how many

binary and triangle links they have. For example, consider groups of friends

linked on Facebook. We study this model in Sections 3.2−3.5.
3A different approach is to look at the rate at which agents’ beliefs converge. For example, Hann-

Caruthers, Martynov, and Tamuz (2018) compare the cases of “observable signals” and “observable
actions” in the classic herding model of Bikhchandani et al. (1992).
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The Game. The agents seek to learn about the quality of a single product of quality

q ∈ {L,H} = {0, 1}. Time is continuous, t ∈ [0, 1]. At time t = 0, agents share a

common prior Pr(q = H) = π0 ∈ (0, 1), independent of network G and signals ξ.

Agent i develops a need for the product, or enters, at time ti ∼ U [0, 1].4 She ob-

serves which of her neighbors have adopted the product and updates her belief about

product quality to πi. The agent can then inspect the product at cost κi ∼F [κ, κ̄],

with bounded pdf f . If she inspects the product, she observes its quality and adopts

it iff q = H. If the agent does not inspect, she can either pass on the product or

adopt it blindly, without inspection. Entry times ti and inspection costs κi are pri-

vate information, independent within agents, and iid across agents. All of these are

independent of product quality q, the network G, and agents’ signals ξ.

Adopting the product yields utility 1 if quality is high and −M if quality is low,

whereas non-adoption yields utility 0. Behavior is then as follows: If agent i sees a

neighbor adopt, her posterior is πi = 1 and she adopts blindly. If she sees no adop-

tion, her posterior is πi ≤ π0. We assume M ≥ π0/(1 − π0), so adopting blindly is

dominated in this case; the agent thus inspects if κi ≤ πi and otherwise passes on the

product. We assume that some cost-types inspect at the prior belief, κ < π0. Our

solution concept is Bayesian Nash equilibrium.

Remarks. As discussed in Section 1.1, the two salient aspects of our social learning

model are inspection and adoption. Having agents enter without private information

and learn quality perfectly upon inspection cleanly separates the role of social and

private information. The adoption aspect makes learning asymmetric. If agent i sees

that j has adopted, she knows that quality is high. Conversely, if j has not adopted,

this may be because (i) he has yet to develop a need for the product, (ii) he developed

a need but chose not to inspect, or (iii) he inspected and quality is low.

Additionally, we assume that agents adopt the product iff quality is high. A single

adoption is thus proof of high quality and induces agents to adopt blindly; conversely,

agents who observe no adoption get more pessimistic and either inspect the product

or pass on it. Jointly, these assumptions reduce agent i’s problem to a binary decision
4The uniform distribution is a normalization: ti should not be interpreted as calendar time, but

rather as time-quantile in the product life-cycle.
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at a single information set: Whether or not to inspect if none of her neighbors have

adopted by ti. The analysis is unchanged if, due to idiosyncratic preferences, agents

adopt high-quality products with probability αH < 1. In Section 4.2, we discuss a

model variant where agents also adopt low-quality products with probability αL > 0.

2.1 Examples: Directed Networks

The next two examples of directed trees (i.e. networks where any two agents i, j are

connected by at most one path i→ ...→ j) illustrate agents’ inference problem.

Example 1 (Directed Pair i → j). Suppose there are two agents, Iris and John.

John has no social information, while Iris observes John. Let xj,t be the probability

that John adopts product H by time t.5 He enters uniformly over t ∈ [0, 1], and so

the time-derivative ẋj,t equals the probability he adopts conditional on entering at

time t. Since he inspects iff κj ≤ π0 and then always adopts product H, we have

ẋj = Pr(j adopt) = Pr(j inspect)= F (π0), where we drop the time subscript.

Iris, in turn, learns from John’s adoption. We thus interpret John’s adoption curve

xj as Iris’s social learning curve. If John has adopted, Iris infers that quality is high

and also adopts. Conversely, if John has not adopted, Iris’s posterior that quality is

high is given by Bayes’ rule,

π(xj) :=
(1− xj)π0

(1− xj)π0 + (1− π0)
. (1)

Iris inspects if κi ≤ π(xj). As xj rises over time, Iris becomes more pessimistic when

John does not adopt. All told, Iris’s adoption rate equals

ẋi = 1− Pr(i not adopt) = 1− Pr(j not adopt)× Pr(i not inspect|j not adopt)

= 1− (1− xj)(1− F (π(xj))) =: Φ(xj). (2)

The function Φ, which maps i’s social information xj to her own adoption ẋi, plays a

central role throughout the paper. 4

5Since no agent adopts when θ = L, it suffices to keep track of the adoption probability conditional
on θ = H.
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Example 2 (Directed Chain). Suppose there is an infinite chain of agents, so Kata

observes Lili, who observes Moritz, and so on ad infinitum.6 Analogous to equation

(2), adoption in the symmetric equilibrium is governed by the ODE

ẋ = Φ(x). (3)

This captures the idea that Kata’s decision takes into account Lili’s decision, which

takes into account Moritz’s decision, and so on. The simplicity of the adoption curve

is in stark contrast to the cyclical behavior seen in traditional herding models when

agents observe only their immediate predecessors (Celen and Kariv, 2004). 4

2.2 General Networks

We now turn to the analysis of general random networks G = (I,Ξ, µ). We first study

agents’ adoption rate and their social learning curves, and show that adoption rises

with social information under a bounded hazard rate assumption. We then close the

model and establish that it admits a unique equilibrium.

We start with some definitions. As in the examples of Section 2.1, we generally

denote agent i’s probability of adopting product H by xi. Agent i may not know

the network, and so we keep track of agents’ adoption across realizations of G and

signals ξ. Let xi,G,ξ be agent i’s realized adoption curve, given (G, ξ) after taking

expectations over others’ entry times tj and cost draws κj. Taking expectation over

(G, ξ−i), let xi,ξi :=
∑

G,ξ−i
µ(G, ξ−i|ξi)xi,G,ξ be i’s interim adoption curve given her

signal ξi. Throughout, we drop the time subscript t for these and all other curves.

Bayesian agents form beliefs over their neighbors’ adoption decisions. Since a

single adoption by one of i’s neighbors perfectly reveals high quality, she only keeps

track of this event. Specifically, let yi,G,ξ be the probability that at least one of

i’s neighbors adopts product H by time t ≤ ti in network G given signals ξ, and

yi,ξi :=
∑

G,ξ−i
µ(G, ξ−i|ξi)yi,G,ξ be the expectation conditional on ξi.

To solve for i’s realized adoption curve xi,G,ξ, consider two cases. If she sees one of

her neighbors adopt, she updates her belief to πi = 1 and adopts blindly. Conversely,

if she sees no adoption, she updates her belief to πi = π(yi,ξi) ≤ π0 and inspects
6In Section 3.1, we interpret this infinite network as a limit of the finite networks in our model.
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and adopts iff her inspection cost is below this cutoff, κi ≤ ci,ξi := πi. Analogous to

equation (2), i’s realized adoption curve follows

ẋi,G,ξ = 1− (1− yi,G,ξ)(1− F (π(yi,ξi))) =: φ(yi,G,ξ, yi,ξi). (4)

Note that equation (4) depends on both the realized and the interim adoption prob-

ability of i’s neighbors, yi,G,ξ and yi,ξi , respectively. The former determines whether i

actually observes an adoption, given (G, ξ); the latter determines i’s posterior belief

when none of her neighbors adopt, which depends only on i’s coarser information ξi.

Taking expectations over (G, ξ−i) given ξi, agent i’s interim adoption curve is then

ẋi,ξi = 1− (1− yi,ξi)(1− F (π(yi,ξi))) = φ(yi,ξi , yi,ξi) = Φ(yi,ξi). (5)

Equation (5) captures our positive implications for the diffusion of new products.

Our primary results concern normative implications, quantifying the value of social

learning, as captured by i’s social learning curve yi,ξi . To see that this curve indeed

measures i’s learning, observe that the probability that i sees an adoption is given by

≥ 1 adopt 0 adopt

q = H yi,ξi 1− yi,ξi
q = L 0 1

If yi,ξi = 1, then agent i has perfect information about the state; if yi,ξi < 1, she

has effectively lost the signal with probability 1− yi,ξi . A rise in yi,ξi thus Blackwell-

improves her social information, and thereby her expected utility.7

Clearly, i’s social information improves over time: Since adoption is irreversible,

yi,G,ξ rises in t for every G, and hence also in expectation. Much of our paper compares

social learning curves across networks. For networks G̃ and G (with overlapping agents

i and types ξi) we write ỹi,ξi ≥ yi,ξi if social information is greater in G̃ for all t, and

ỹi,ξi > yi,ξi if it is strictly greater for all t > 0.

Social learning and adoption are linked by (5). One would think that as i col-

lects more information, her adoption of product H increases. Indeed, with perfect
7Since agent i never adopts the low-quality product, her welfare cost consists of failing to adopt

the high-quality product and paying to inspect the low-quality product.
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information she always adopts. More generally, monotonicity requires an assumption.

Assumption: The distribution of costs has a bounded hazard rate (BHR) if

f(κ)

1− F (κ)
≤ 1

κ(1− κ)
for κ ∈ [0, π0]. (6)

Lemma 1. If F has a bounded hazard rate, (6), then i’s interim adoption probability

xi,ξi increases in her information yi,ξi.

Proof. Differentiating (5)

Φ′(y) = ∂1φ(y, y) + ∂2φ(y, y) = 1− F (π(y)) + (1− y) · π′(y) · f(π(y)) (7)

= 1− F (π(y))− π(y) · (1− π(y)) · f(π(y)),

where the second equality uses Bayes’ rule (1) to show

(1− y) · π′(y) = −(1− y)
π0(1− π0)

(1− yπ0)2
= −(1− y)π0

1− yπ0

1− π0

1− yπ0

= −π(y) · (1− π(y)).

Equation (7) captures two countervailing effects: Its first term is positive because i

adopts blindly if she observes an adoption. The second term is negative because an

increase in y makes i is more pessimistic when she sees no adoption. The aggregate

effect is positive iff BHR holds. Thus if BHR holds for all κ ∈ [0, π0], then Φ′(y) ≥ 0

for all y ∈ [0, 1], and better information yi,ξi means higher slope ẋi,ξi and level xi,ξi .

For an intuition, recall that adoption probabilities x condition on high quality,

q = H. Agent i’s expected posterior belief E[πi|H] thus exceeds the prior π0 and

increases with her information. Whether i’s adoption probability E[F (πi)|H] also

increases in her information depends on the curvature of the cost distribution F ; this

is guaranteed by BHR. In turn, this assumption is satisfied if f is increasing on [0, 1],

which includes κ ∼ U [0, 1] as a special case.8

8An increasing density guarantees f(κ) ≤
∫ 1
κ
f(z)dz

1−κ ≤ 1−F (κ)
κ(1−κ) . For other densities f , BHR is

automatically satisfied when κ ≈ 0 since the RHS increases to infinity. For higher costs, BHR states
that the density does not decrease too quickly, d log f(κ)/dκ ≥ −2/κ. In particular, BHR holds with
equality at all κ if f(κ) ∝ 1/κ2.
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To see how Lemma 1 relies on BHR, assume the distribution F (κ) has support

[0, π0]; this violates BHR since the denominator in the left-hand side of (6), 1−F (π0),

vanishes. Without social information, agent i adopts product H with probability 1.

With social information, agent i adopts with probability 1 if some neighbor adopts,

and below 1 if no neighbor adopts, since π(yi,ξi) < π0. In expectation, social infor-

mation lowers agent i’s adoption rate, contradicting Lemma 1.

Our main results, Theorems 1-4, compare social learning curves (and thus welfare)

across networks. Lemma 1 means that if we assume BHR, then the same comparisons

apply to adoption rates.9

Lastly, we close the model in equilibrium.

Proposition 1. In any random network G there exists a unique equilibrium.

The challenge with proving Proposition 1 in Appendix A.1 is to keep track of the

adoption probability yi of i’s neighbors on the right-hand side of (4). There are two

issues. First, the self-reflection problem: If i and j observe each other, then when i

enters, she knows that j cannot have seen her adopt, which j interprets as bad news.

Second, the correlation problem: when i’s neighbors j, k observe each other or share

sources of information, their adoption is correlated. The directed tree networks in

examples 1 and 2 abstract from these problems. The next section considers complete

networks where we see the effects of self-reflection and correlation. Beyond such

simple examples, the differential equation governing equilibrium must keep track of

agents’ joint adoption probabilities, whose dimensionality grows exponentially with

the number of agents. For this reason, Section 3 considers large, random networks,

where we recover simple formulas for diffusion curves akin to the examples.

2.3 Examples: Undirected Networks

Examples 1 and 2 illustrated social learning in directed tree networks. The next two

examples prepare our analysis of undirected networks and networks with cliques in

Sections 3.2 and 3.3, respectively.

9As a corollary, BHR implies that interim adoption curves xi,ξi are convex in time since social
information yi,ξi increases.
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Example 3 (Undirected Pair i ↔ j). Agent i’s social learning curve equals i’s

expectation of j’s adoption curve at t ≤ ti; for convenience we denote this by x̄j. To

solve for x̄j we must distinguish between two probability assessments of the event that

j observes i adopt. From i’s “objective” perspective, this probability equals 0 since i

knows she has not entered at t ≤ ti. From j’s “subjective” perspective, the probability

equals x̄i, since j thinks he is learning from agent i given t ≤ tj. This objective and

subjective probabilities correspond to the “realized” and “interim” probabilities in

equation (4), respectively. Thus,

˙̄xj = φ(0, x̄i) = F (π(x̄i)). (8)

By symmetry, x̄i = x̄j =: x̄, reducing (8) to a one-dimensional ODE. The actual

(unconditional) adoption probability follows ẋ = Φ(x̄). 4

Example 4 (Complete Networks). More generally, consider the complete network

of I + 1 agents. When I = 1, this is equivalent to the undirected pair. With more

agents, agent j’s adoption before i enters depends on agent k’s adoption before both i

and j enter. One might worry about higher-order beliefs as I gets large. Fortunately,

we can side-step this complication by thinking about the game from the first mover’s

perspective, before anyone else has adopted.

To be specific, let the first adopter probability x̂ be the probability an agent adopts

given that no one else has yet adopted. Since everyone is symmetric, intuition suggests

that the first adopter attaches subjective probability (1− x̂)I to the event that none

of the other potential first adopters has adopted. By definition, the first adopter

observes no adoption herself, and so we define x̂ as the solution of

˙̂x = φ(0, 1− (1− x̂)I) = F (π(1− (1− x̂)I)), (9)

generalizing equation (8). We prove in Appendix A.2 that:

Lemma 2. In the complete network with I + 1 agents, any agent’s social learning

curve is 1− (1− x̂)I ; the adoption probability follows ẋ = Φ(1− (1− x̂)I). 4
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3 Large Random Networks

In this section we characterize equilibria in large random networks, such as those

in Figure 1. This allows us to compare social learning curves across networks, and

assess the impact of more links and more clustering. Moreover, these networks are

sufficiently rich to resemble reality and be used for empirical applications.

Formally, we introduce two network configuration models. In Section 3.1 we study

directed networks with multiple types; this nests deterministic directed trees (Exam-

ples 1 and 2) and directed stochastic block networks as special cases. We study their

limit equilibria as the networks grow large, ensuring the network locally resembles a

tree. In such a tree, neighbors’ adoption decisions are mutually independent, thus

eliminating the correlation and reflection effects. We characterize equilibrium via

simple ODEs and show that more direct or indirect links improve learning.

Next, we study undirected networks with cliques. To aid intuition, we build the

model up in steps. In Section 3.2, we consider undirected random networks, such

as Erdős-Rényi, where neighbors’ decisions are mutually independent. We show that

agents learn less than in a directed network with the same degree distribution. In

Section 3.3, we study networks of cliques, where i’s neighbors’ decisions are correlated

within cliques but independent across cliques. We show that agents learn less than in

an undirected random network with the same degree distribution. In Section 3.4, we

study correlation neglect: Agents are connected via a network of cliques but believe

they are in a network of independent, bilateral links. Such correlation neglect reduces

social learning. Finally, in Section 3.5 we justify the heuristic approach taken in the

prior sections by nesting these models in a general model and confirming that the

identified strategies indeed constitute limit equilibria.

Taken together, this analysis suggests a “macroeconomic” approach to studying

diffusion empirically: First, calibrate a random network to the real-life network by

matching the pertinent network parameters (agents’ types, degree distributions, clus-

ter coefficients). Then, solve for equilibrium behavior on this approximate network.

This contrasts with the “microeconomic” approach typically used, where one studies

a behavioral heuristic on the actual network.
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3.1 Directed Networks with Multiple Types

We first consider diffusion in large directed networks with different types of agents.

For example, think of Twitter users as celebrities, posters, and lurkers: Celebrities

only follow celebrities, while posters and lurkers follow posters and celebrities. Agents

know who they follow and know the distribution over networks, but do not know

exactly who others follow.

To formalize this idea, we generate the random network GI via the configuration

model (e.g. Jackson (2010), Sadler (2020)). For any agent i, independently draw a

finite type θ ∈ Θ according to some distribution with full support. For any agent with

type θ, independently draw a vector of labeled outlinks d = (dθ′)θ′ ∈ NΘ; these are

realizations of a random vector Dθ = (Dθ,θ′)θ′ with finite expectations E[Dθ,θ′ ]. We

call D = (Dθ,θ′)θ,θ′ the degree distribution. To generate the network, connect type-θ′

outlinks to type-θ′ agents independently across outlinks. Finally, prune self-links from

i to i, multi-links from i to j, and − in the unlikely case that no type-θ′ agent was

realized − all of the unconnectable type-θ′ outlinks. Agent i’s signal ξi consists of her

degree d ∈ NΘ after the pruning.10

Since GI is symmetric across agents, we drop their identities i from the notation of

Section 2.2, and write the adoption probabilities, learning curves, and cost thresholds

of a degree-d agent as xd, yd, and cd = π(yd), respectively. Taking expectation over

the degree of a type-θ agent, we write xθ = E[xDθ ].

When solving for equilibrium we consider the limit as the number of agents I

grows large. The model then nests many natural special cases.

• Directed Finite Trees. In the case of Example 1, set Θ = {i, j} with determin-

istic degrees Di,j ≡ 1 and Dj,j ≡ Dj,i ≡ Di,i ≡ 0. Every Iris-type thus observes

one John-type, and equilibrium adoption probabilities are as in Example 1.11

10This definition differs from the literature on configuration models, e.g. Sadler (2020), in three
ways. (a) Sadler considers undirected networks, to which we turn in Section 3.2. (b) We model
agent i’s degree as a random variable Dθ′ , while Sadler fixes the realized degrees d and imposes
conditions on the empirical distribution of degrees as I grows large. (c) When a realized network G
has self-links or multi-links, we prune these links from G, while Sadler discards G by conditioning
the random network on realizing no such links. We view (b) and (c) as technicalities, and deviate
from the literature because doing so simplifies our analysis.

11Conversely, a John-type is observed by a random number of Iris-types, but that does not matter
for individual adoption probabilities.

16



The following analysis generalizes this example to any finite directed tree.

• Directed Regular Trees. In the case of Example 2, the type space is trivial and

the degree is deterministic, D ≡ 1. For any finite I, the realized network G gives

rise to cycles, but as I grows large the length of these cycles grows large, and

the network approximates an infinite line. More generally, setting D ≡ d > 1

gives rise to regular directed trees.

• Directed Stochastic Block Networks. A prominent instance of networks with

random degree are Erdős-Rényi networks, which correspond to a single type

and Poisson-distributed D. More generally, stochastic block networks (which

are useful for capturing homophily) correspond to a multi-type generalization

with Poisson-distributed Dθ,θ′ .

For large I, the random network locally resembles a tree where the adoption prob-

abilities of an agent’s neighbors are approximately independent. The probability

that an agent with degree d = (dθ′) observes an adoption is then approximated by

yd ≈ 1−∏θ′(1− xθ′)dθ′ . Substituting this approximation into (5), we define (x∗θ) to

be the solution of

ẋθ = E

[
Φ

(
1−

∏
θ′

(1− xθ′)Dθ,θ′
)]

. (10)

This is a Θ-dimensional ODE, which is easy to compute. Note that while the number

of possible degrees is infinite, agents cannot observe their neighbors’ degrees and so

we solve the learning problem at the level of neighbors’ finite types. Thus, in the

Twitter example, we get one ODE each for celebrities, posters, and lurkers. In a

regular, single-type network with degree d, (10) simplifies to

ẋ = Φ
(
1− (1− x)d

)
, (11)

and for d = 1 we recover (3).

We now show that this simple, Θ-dimensional ODE is a good description of adop-

tion behavior for large I. Formally, say that a vector of cutoff costs (cd) is a limit

equilibrium of the large directed random network with degree distribution D if it is

an εI-equilibrium in GI for some sequence (εI) with limI→∞ εI = 0. Specifically, let

c∗d := π(1−∏θ′(1− x∗θ′)dθ′ ) be the cutoff costs associated with (x∗θ).
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Proposition 2. The cutoffs (c∗d) are the unique limit equilibrium of the large directed

random network with degree distribution D.

Proof. See Appendix B.1.

The notion of a limit equilibrium extends our “macroeconomic perspective” from

the modeler to the agents. While the real network is finite, agents treat it as infinite;

in large networks, the resulting behavior is approximately optimal. For completeness,

Online Appendix D.1 provides a “microeconomic perspective” by showing that the

equilibria of the finite models GI converge to (c∗d).

Turning to the substantive question of our paper, we now argue that both direct

and indirect links improve agents’ social learning. Thus lurkers are better off if

celebrities or posters increase their number of links. While not surprising, such simple

comparative static results have eluded traditional herding models. Figure 2 illustrates

the social learning curves as we add links to a directed tree. The left panel compares

a lone agent (John in Example 1), an agent with one link (Iris in Example 1), and an

infinite chain (Kata in Example 2). The social learning curves shift up as neighbors

add more links; the Blackwell-ranking implies that Kata is better off than Iris, who

is better off than John. The right panel shows the social learning curves in regular

networks with d = 1 (i.e. an infinite chain), d = 5, and d = 20. Again, these social

learning curves shift up, so agents benefit from denser trees.

Formally, consider two degree distributions such that D̃ �FOSD D in the usual

multivariate stochastic order. Let x∗θ, x̃∗θ be the associated adoption probabilities

derived from (10), and y∗d and ỹ∗d be the corresponding social learning curves.

Theorem 1. Assume F has a bounded hazard rate (6). Social learning and welfare

improve with links: If D̃ �FOSD D,

(a) For any degree d, ỹ∗d ≥ y∗d.

(b) For any type θ, E[ỹ∗
D̃θ

] ≥ E[y∗Dθ ].

Proof. Recalling Lemma 1, assumption (6) means that Φ′ ≥ 0. Thus, the right-hand

side of (10) FOSD-rises in both the exogenous degree D and the endogenous adoption

probabilities xθ. Thus, the solution (x∗θ) rises in D, x̃∗θ ≥ x∗θ, and so ỹ∗d ≥ y∗d. Taking

18



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lone agent (John)

One link (Iris)

Chain of links (Kata)

Time

P
r(

O
bs

er
ve

 A
do

pt
|H

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tree, d=1

Tree, d=5

Tree, d=20

Time

P
r(

O
bs

er
ve

 A
do

pt
|H

)

Figure 2: Social Learning Curves in Directed Tree Networks. The left panel illustrates
Examples 1 and 2. The right panel shows regular directed trees with degree d. This figure assumes
uniform inspection costs, κ ∼ U [0, 1], and an even prior, π0 = 1/2.

expectations over d then yields part (b).12

Part (a) says that social information rises if we fix the degree d, and thus speaks

to the value of additional indirect links. Obviously, the additional direct links also

help, as shown in part (b). This result confirms the intuition that social information

is more valuable for “visible” products (e.g. laptops) that are represented by a dense

network than for “hidden” products (e.g. PCs).

Theorem 1 is silent about the quantitative impact of direct and indirect links.

The next example emphasizes the importance of direct links.

Example 5 (Two Links vs Infinite Chain). In Appendix B.2, we show that

agent i learns more if she has two uninformed neighbors than if she learns from the

infinite directed chain from Example 2. Intuitively, if i → j → k, then agent k

affects i’s action only if k enters first, then j enters, and then i enters. Thus, the

chance of learning information from the nth removed neighbor in the chain is 1
n!
,

suggesting that an infinite chain of signals is worth less than two direct signals, as∑∞
n=1 1/n! = e − 1 < 2. Moreover, these indirect signals are intermediated (i.e. k’s

signal must pass through j), which further reduces their information value. 4
12If we additionally assume that the inequality D̃ �FOSD D is strict and that the Markov chain

on Θ induced by D̃ is irreducible, we more strongly get the strict inequality ỹ∗d > y∗d.
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3.2 Undirected Networks

We now consider undirected random networks, representing friends on Facebook, or

drivers who learn about cars from observing other drivers’ choices. To formalize

this, we use a single-type, undirected variant of the configuration model. Each agent

independently draws d ∈ N link-stubs generated by a random variable D. We then

independently connect these stubs in pairs, and prune self-links, multi-links, and

residual unconnected stubs (if the total number of stubs is odd). Online Appendix

D.2 extends the model to multiple types.

An important feature of random undirected networks is the friendship paradox.

Namely, i’s neighbors typically have more neighbors than i herself. Formally, we

define the neighbor’s degree distribution D′ by

Pr(D′ = d) :=
d

E[D]
Pr(D = d). (12)

For example, in an Erdős-Rényi network, D is Poisson and D′ = D+ 1, whereas in a

regular network, D′ = D ≡ d.

We now study the behavior of the limit economy as the number of agents grows

large. This allows us to treat neighbors’ adoptions as independent; Proposition 2′

in Section 3.5 justifies this approach. The simplest such network, corresponding to

D ≡ 1, is the undirected pair in Example 3. Following this example, we write x̄

for the probability that i’s neighbor j has adopted at t ≤ ti. With general degree

distribution D, neighbor j additionally learns from another D′−1 independent links,

from which he observes no adoption with probability (1− x̄)(D′−1). All told, agent i

expects j to observe an adoption with objective probability 1− (1− x̄)(D′−1), while j

expects to observe an adoption with the higher, subjective probability 1− (1− x̄)D
′ .

So motivated, define x̄∗ as the solution of

˙̄x = E
[
φ
(

1− (1− x̄)D
′−1, 1− (1− x̄)D

′
)]
. (13)

Agent i’s actual, unconditional adoption rate then equals E[Φ(1− (1− x̄∗)D)]. Equa-

tion (13) implies that, as in Theorem 1, social learning increases with the number of

links D. We prove this in Online Appendix D.3.

We now show how backward links harm social learning.
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Figure 3: Networks from Examples 3 and 6. The left panel adds a backward link. The right
panel adds a correlating link.

Example 3 (Undirected Pair i ↔ j) continued. Start with i → j, and con-

sider the effect of the backward link j → i on i’s social information, as illustrated

in the left-hand panel of Figure 3. Equation (8) implies that ˙̄xj ≤ F (π0), and so

x̄j ≤ F (π0)t, which is j’s adoption curve if he does not observe i. Thus, the link

j → i lowers i’s social information and her utility. Intuitively, when agent i enters

the market at ti, she knows that j cannot have seen her adopt; however, j does not

know the reason for i’s failure to adopt. This makes j more pessimistic, reduces his

adoption probability, and lowers i’s social learning curve and utility. Of course, the

backward link also makes j better off. 4

To address the overall welfare effect we compare a network where agents have D

directed links to one with D undirected links, as illustrated in Figure 4. Recalling

neighbors’ limit adoption probabilities in directed and undirected networks x∗, x̄∗ from

equations (10) and (13) respectively, we write y∗d = 1−(1−x∗)d and ȳd = 1−(1− x̄∗)d

for the respective social learning curves.

Theorem 2. Assume D′−1 � D in the FOSD-order. Social learning and welfare are

higher when the network is directed rather than undirected: For any degree d, y∗d > ȳ∗d.

Proof. Rewriting (10) for a single type, the adoption probability of any given neighbor

in the directed network follows

ẋ = E
[
φ
(

1− (1− x)D, 1− (1− x)D
)]
. (14)

Using D′ − 1 � D � D′, ∂1φ > 0, and ∂2φ < 0, the right-hand side of (14) exceeds

21



Directed vs. Undirected

i

j k

l

i

j k

l

7

Figure 4: Comparing Directed and Undirected Networks. This figure illustrates two Erdős-
Rényi networks from agent i’s perspective, showing i’s neighbors and their outlinks. For simplicity,
the picture of the directed network does not show inlinks to i or her neighbors; in a large network,
these inlinks do not affect i’s learning. Observe that i’s neighbors have one more outlink in the
undirected network, namely the link to i; this reflects the friendship paradox.

the right-hand side of (13) for x = x̄. By the Single-Crossing Lemma (Appendix B.3)

the solution of (14) exceeds the solution of (13), x∗ > x̄∗, and so y∗d > ȳ∗d.

Theorem 2 says that fixing the degree distribution, directed networks generate

better information than undirected networks. Intuitively, in an undirected network

an agent’s neighbors cannot have seen her adopt when she enters; this makes them

more pessimistic and reduces social learning. Countervailing this effect is the fact that

neighbors have a higher degree in the undirected network because of the friendship

paradox, D � D′. The assumption D′ − 1 � D limits this countervailing effect.13

13To see how the friendship paradox can overturn the result, suppose that agents are equally likely
informed, d = 100, or uninformed, d = 1. In the directed network, agents are equally likely to be
looking at an informed or uninformed neighbor. In contrast, in the undirected network, agents are
far more likely to be looking at informed neighbors.
The condition D′ − 1 � D is tight: Assume a degenerate, binary cost distribution F with atoms

at κ = 0 and κ̄ > π0; such an F is approximated by distributions that satisfy our bounded pdf
assumption. Agents who do not observe an adoption inspect iff κ = κ, irrespective of y, and so
∂2φ = 0. If the degree distribution is Poisson, D′ − 1 = D, the right-hand sides of (13) and (14)
coincide, and so y∗d = ȳ∗d.
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3.3 Clustering

One prominent feature of real social networks is clustering, whereby i’s neighbors j, k

are also linked to each other. For example, consider an agent who gets information

from her family, her geographic neighbors, and her colleagues; we think of information

as independent across groups but correlated within them.

The bilateral configuration models in the previous subsections do not give rise to

such clustering since the chance that any two neighbors of i are linked vanishes for

large I. To capture clustering, we consider the following variant of the configuration

model. Each agent independently draws D pairs of link-stubs, which are then ran-

domly connected to two other pairs of link-stubs to form a triangle. As in Section 3.2

we then prune self-links and multi-links, as well as leftover pairs if the total number

of pairs is not divisible by three. Also, recall the weighted distribution D′ from (12)

that captures the number of link-pairs of a typical neighbor by accounting for the

friendship paradox.

We now study the behavior of the limit economy as the number of agents grows

large; Proposition 2′ in Section 3.5 justifies this approach. Adoption is independent

across neighboring triangles but correlated within them. The simplest such network,

corresponding to D ≡ 1, is the triangle from Example 4 with I = 2. There we

argued that the learning curve is determined by the adoption probability x̂ of the

first adopter. Since the first adopter expects to see no adoption with subjective

probability (1 − x̂)2 but objectively never observes an adoption, we concluded that
˙̂x = φ(0, 1− (1− x̂)2). For a general distribution D, agent i’s neighbors additionally

learn from another D′−1 independent triangles, from which they observe no adoption

with probability (1− x̂)2(D′−1). All told, define x̂∗ as the solution of

˙̂x = E
[
φ
(

1− (1− x̂)2(D′−1), 1− (1− x̂)2D′
)]
. (15)

Agent i’s actual, unconditional adoption rate then equals E[Φ(1− (1− x̂)2D)].

We now show how clustering can be harmful to social information and welfare.

Example 6 (Correlating Link). Assume agent i initially observes two uninformed

agents j and k, as in the right panel of Figure 3. The probability that neither adopts
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Figure 5: Bilateral Links vs. Triangles. This figure illustrates two networks from agent i’s
perspective. In the left network, everyone has 2D bilateral links, where D = 2 for {i, k,m} and
D = 1 for {j, l}. In the right network, everyone is part of D triangles.

is (1− F (π0)t)2. Now, suppose we add a link from j to k, correlating their adoption

outcomes. Agent k’s behavior is unchanged, but the probability that agent i sees an

adoption decreases. This is because the probability xj|¬k that j adopts conditional

on k not adopting follows ẋj|¬k = F (π(xk)) < F (π0). Intuitively, agent i just needs

one of her neighbors to adopt. Adding the link j → k makes j more pessimistic

and lowers his adoption probability exactly in the event when his adoption would be

informative for i, namely, when k has not adopted. Thus, the correlating link makes

agent i worse off. Of course, this link also makes agent j better off. 4

To address the overall welfare effect, we compare an undirected network with D

pairs of link-stubs to one with 2D bilateral link-stubs, as illustrated in Figure 5.

The social learning curve equals ŷ∗2d = 1 − (1 − x̂∗)2d in the former network, and

ȳ∗2d = 1− (1− x̄∗)2d in the latter, where x̂∗ solves (15) and x̄∗ solves (13).

Theorem 3. Clustering reduces social learning and welfare: For any degree d, ŷ∗2d <

ȳ∗2d.

Proof. Equation (12) implies that with 2D bilateral links, the link distribution of a

neighbor equals (2D)′ = 2D′.14 Thus, the conditional adoption probability of one’s

14Indeed, Pr((2D)′ = 2d) = Pr(2D = 2d) 2d
E[2D] = Pr(D = d) d

E[D] = Pr(D′ = d) = Pr(2D′ = 2d).
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neighbor follows

˙̄x = E
[
φ
(

1− (1− x̄)2D′−1, 1− (1− x̄)2D′
)]
. (16)

Since ∂1φ > 0, the right-hand side of (16) exceeds the right-hand side of (15) when

x̄ = x̂. Thus, the Single-Crossing Lemma implies x̂∗ < x̄∗ and so ŷ∗2d < ȳ∗2d.

Agents learn slower in cliques than with an equivalent number of independent

links. Intuitively, agent i needs one of her neighbors to be sufficiently optimistic that

they are willing to experiment. Cliques correlate the decisions of i’s neighbors, making

them more pessimistic in exactly the event when i most wants them to experiment.

3.4 Correlation Neglect

Bayesian updating on networks can be very complex as agents try to distinguish new

and old information. For example, Eyster and Rabin’s (2014) “shield” example shows

that a Bayesian agent i should counterintuitively “anti-imitate” a neighbor j if j’s

action is also encoded in the actions of i’s other neighbors. Instead of anti-imitating,

agents may adopt heuristics, such as ignoring the correlations between neighbors’

actions (e.g. Eyster et al. (2018), Enke and Zimmermann (2019), Chandrasekhar et

al. (2020)). Our model can be adapted to capture such mis-specifications, and predicts

that correlation neglect reduces social learning.15

To model correlation neglect, we consider a configuration model where agents

draw D pairs of undirected triangular stubs, but agents believe all their information

is independent. That is, i believes that her neighbors are not connected, believes her

neighbors think their neighbors are not connected, and so on. All told, agents think

that the network is as in Section 3.2, while in reality it is as in Section 3.3.16

Consider the limit as I grows large. Since agent i believes that links are gener-

ated bilaterally, her subjective probability assessment that any of her neighbors has

adopted, x̄∗, solves (16). An agent with 2d links thus uses cutoff π(1−(1−x̄∗)2d) when
15There is a growing literature studying herding models with mis-specified beliefs. Eyster and

Rabin (2010) and Bohren and Hauser (2020) study complete networks, while Eyster and Rabin
(2014) and Dasaratha and He (2020) consider the role of the network structure.

16To formally capture mis-specification in the general model of Section 2, we drop the assumption
that agents’ beliefs µ(G, ξ−i|ξi) are deduced from a common prior µ(G, ξ).
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choosing whether to inspect. In reality, agent i’s neighbors form triangles (i, j, k), and

so the objective probability x̌∗ that the first adopter in a triangle adopts follows a

variant of the usual first adopter triangle formula (15),

˙̌x = E
[
φ
(

1− (1− x̌)2(D′−1), 1− (1− x̄∗)2D′
)]
. (17)

Intuitively, the first adopter in (i, j, k) expects to see an adoption with probability

ȳ∗2d = 1−(1−x̄∗)2D′ , but the objective adoption probability is y̌∗2d = 1−(1−x̌∗)2(D′−1).17

Turning to the effect of correlation neglect on social learning, consider an agent

with 2d links in a network of triangles. Her social information is ŷ∗2d = 1− (1− x̂∗)2d

in equilibrium and y̌∗2d under correlation neglect

Theorem 4. Correlation neglect reduces social learning: For any degree d, y̌∗2d < ŷ∗2d.

Proof. By the proof of Theorem 2, clustering decreases neighbors’ adoption rates,

x̄∗ > x̂∗. Since ∂2φ < 0, the RHS of (17) is smaller than the RHS of (15) when x̌ = x̂.

Then the Single-Crossing Lemma implies that x̌∗ < x̂∗ and so y̌∗2d < ŷ∗2d.

Intuitively, when agent j believes all his sources of information are independent,

he overestimates the chance of observing at least one adoption, and grows overly

pessimistic when he observes none. This reduces j’s adoption probability and reduces

agent i’s social information.

As a corollary, correlation neglect reduces welfare: By Theorem 4 it reduces i’s

social information; additionally, it causes her to react suboptimally to her information.

Ironically, while correlation neglect lowers i’s objective expected utility, it raises her

subjective expected utility: Formally, ȳ∗2d > ŷ∗2d, so her subjective social information

is higher than in equilibrium. Intuitively, correlation neglect makes i overly optimistic

about the chance of observing at least one adoption. It is precisely this over-optimism

that reduces actual adoption probabilities by flipping into over-pessimism when the

adoption fails to materialize.
17Formally, (17) is an instance of equations (33-34) in Appendix B.4. All of these equations

leverage the fact that adoption dynamics in our model are modular in (i) the true network (the first
argument of φ), and (ii) agents’ behavior (the second argument of φ), which in turn depends on
their beliefs about the network. It is this modularity, which allows us to easily extend our analysis
to non-equilibrium behavior, such as correlation neglect in this section.
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3.5 General Undirected Networks: A Limit Result

We now define random networks that encompass the undirected links and cliques

from the last three sections and show that limit equilibria of this model are described

by a simple, two-dimensional ODE (18-19).

To define these networks ĜI , suppose every agent independently draws D̄ bilateral

stubs and D̂ pairs of triangle stubs with finite expectations. We connect pairs of

bilateral stubs and triples of triangular stubs at random, and then prune self-links,

multi-links, and leftover stubs (if
∑
d̄i is odd or

∑
d̂i is not divisible by three). Agents

know their number of bilateral links and triangle links after the pruning.18

Assume that I is large, and define neighbors’ link distributions D̄′ and D̂′ as in

(12). Since D̄ and D̂ are independent, a neighbor on a bilateral link has D̄′ bilateral

links and D̂ triangle link pairs, whereas a neighbor on a triangular link has D̄ bilateral

links and D̂′ triangle link pairs. As in Sections 3.2 and 3.3, agents condition on the

fact that their neighbors cannot have seen them adopt. So motivated, define (x̄∗, x̂∗)

as the solution to the two-dimensional ODE

˙̄x = E
[
φ
(

1− (1− x̄)D̄
′−1(1− x̂)2D̂, 1− (1− x̄)D̄

′
(1− x̂)2D̂

)]
(18)

˙̂x = E
[
φ
(

1− (1− x̄)D̄(1− x̂)2(D̂′−1), 1− (1− x̄)D̄(1− x̂)2D̂′
)]
. (19)

As in Section 3.2, x̄ is the probability that i’s bilateral neighbor j adopts before ti.

Agent j’s subjective probability of observing no adoption conditions on D̄′ bilateral

links and D̂ triangle link pairs; but from i’s objective perspective, the number of

bilateral links on which j could observe an adoption drops to D̄′ − 1. Similarly, as in

Section 3.3, x̂ is the probability that the first adopter j in one of i’s triangles adopts

before ti. Agent j’s subjective probability of observing no adoption conditions on

D̄ bilateral links and D̂′ triangle link pairs; but from i’s objective perspective, the

number of triangle link pairs on which j could observe an adoption drops to D̂′ − 1.
18Chandrasekhar and Jackson (2018) propose an alternative, closely related “Subgraph genera-

tion model” (SUGM) of large random networks. SUGMs avoid the notion of link stubs and rather
connect any set of nodes into subgraphs (e.g. triangles with a specific combination of node types),
independently across sets. That model accommodates rich subgraphs more easily than our configu-
ration model; on the other hand, it does not allow the flexibility of specifying the degree distribution
directly. But these differences are not crucial, and we conjecture that one can solve for our social
learning equilibria on SUGMs based on simple subgraphs.
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Given beliefs (x̄∗, x̂∗), an agent with d̄ bilateral neighbors and d̂ pairs of triangular

neighbors adopts cutoffs c∗
d̄,d̂

= π(1 − (1 − x̄∗)d̄(1 − x̂∗)2d̂), and her unconditional

adoption probability follows ẋd̄,d̂ = Φ(1− (1− x̄)d̄(1− x̂)2d̂). We can now extend the

limit result, Proposition 2, to undirected networks with cliques.

Proposition 2′. The cutoffs (c∗
d̄,d̂

) are the unique limit equilibrium of ĜI .

Proof. See Appendix B.4.

Social learning in this complex network is thus characterized by a simple, two-

dimensional ODE, (18-19). The model in this section is already rich enough to match

important network statistics, such as the degree distribution or the clustering coeffi-

cient. But the logic behind equations (18-19) and Proposition 2′ easily accommodates

additional features and alternative modeling assumptions. Allowing for larger (n+1)-

cliques amounts to replacing the “2” in the exponents of (18-19) by “n”. Allowing for

multiple types θ of agents is slightly more complicated since it requires keeping track

of the conditional adoption probability of type θ’s neighbor θ′ for all pairs (θ, θ′); we

spell this out in Online Appendix D.2. Our analysis also extends to correlation of D̄

and D̂, and to the alternative assumption that agents know only their total number

of links but cannot distinguish bilateral from triangle links.

4 Discussion

We round the paper off by studying the model’s implications for information aggre-

gation (Section 4.1) and extending the analysis to imperfect social learning (Section

4.2).

4.1 Information Aggregation and the Value of Links

We now reconsider one of the most central issues in social learning: Does society

correctly aggregate dispersed information? The configuration model provides a novel

perspective on this question. Consider a regular network as both the degree d and

the total number of agents I grow large. We show that if I grows sufficiently faster

than d, then agents have access to a large number of almost independent signals and
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society correctly aggregates information. However, if d grows too quickly, the network

becomes “clustered” and information aggregation can fail. As a corollary, in a large

society with a fixed number of agents, more links can introduce excessive correlation

and lower everyone’s utility.

To see the problem with clustering, recall the complete network with I + 1 agents

from Example 4 and the first adopter probability x̂I . When seeing no adoption,

inspection stops once the social information y reaches the “choke point” ȳ = π−1(κ),

recalling the lowest cost type κ < π0. As I →∞, social information yI = 1−(1− x̂I)I

immediately rises to ȳ and stays there for all t > 0.19 Intuitively, observing no

adoption from an exploding number of agents I makes agents grow pessimistic so

fast that they are willing to inspect only at the very first instant. Learning is perfect

when ȳ = 1, which is the case if and only if κ = 0. Thus, unboundedly low costs

are necessary and sufficient for information aggregation, as in Mueller-Frank and Pai

(2016) and Ali (2018). In particular, when κ > 0, high-quality products fail to take

off with probability 1− ȳ > 0, in which case they fizzle out immediately.20

This failure of information aggregation does not arise when the network remains

sparse as the degree grows. Specifically, consider the limit d → ∞ of our large

directed networks, where adoption and social information are given by ẋ∗d = Φ(y∗d)

and y∗d = 1−(1−x∗d)d respectively, as defined in (11). In other words, this is the double

limit of a regular random network where first I →∞ and then d→∞. Since Φ(y) is

bounded away from 0,21 we have y∗d → 1 for all t > 0 as d→∞; that is, information

becomes perfect instantaneously, irrespective of κ. Intuitively, agents’ signals on a

sparse network are independent and their joint adoption decisions become perfectly

informative as the degree grows. This contrasts with Acemoglu et al. (2011) where

“for many common deterministic and stochastic networks, bounded private beliefs are
19Proof: To see limI→∞ yI = ȳ for all t > 0, first note that the first adopter stops experimenting,

˙̂xI = 0, when yI = 1− (1− x̂I)I rises above ȳ, so yI ≤ ȳ for any I, t. For the opposite inequality, if
lim supI→∞ yI < ȳ for some t > 0, then ˙̂xI = F (π(yI)) is bounded away from 0 on [0, t], hence x̂I is
bounded away from 0 at t. Then lim supI→∞(1− x̂I)I → 0 at t, contradicting the initial assumption
that lim supI→∞ 1− (1− x̂I)I < ȳ ≤ 1.

20As I → ∞, agents always stop inspecting low-quality products. The asymmetry between good
and bad products is seen elsewhere in the literature (e.g. Guarino et al. (2011), Hendricks et al.
(2012), and Herrera and Hörner (2013)).

21Proof: Since F (π(0)) > 0, there exists ε > 0 with F (π(y)) ≥ ε for all y ≤ ε. Then Φ(y) =
1− (1− y)(1− F (π(y))) ≥ max{y, F (π(y))} ≥ ε for all y.
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incompatible with asymptotic learning”.22

4.2 Imperfect Social Learning

The baseline model assumes that agents adopt the product if and only if quality

is high. Observing an adoption is thus “perfect good news”, and the agent’s belief

π = Pr(q = H) jumps to 1. This simplifies the analysis by allowing us to summarize

i’s social information (at time-t) by a single number, yi. This analysis immediately

extends to the case when, for idiosyncratic reasons, agents adopt only the high-quality

product with probability αH < 1. In this section we show how to extend the analysis

to more general imperfect social learning where agents adopt the low-quality product

with probability αL > 0. We first show that in large directed random networks,

agents’ learning improves with additional direct and indirect links (as in Theorem

1). We then discuss the self-reflection and correlation effects, arguing that backward

links still inhibit learning (as in Example 3) but that correlating links may improve

learning (unlike in Example 6). Proofs are in Appendix C.

As in the baseline model, agent i enters at time ti ∼ U [0, 1], observes which

neighbors have adopted by time ti, and updates her belief about quality, πi. Inspection

costs κi ∼ F [κ, κ] and perfectly reveals agent i’s utility, which is determined by the

quality q ∈ {L,H} and the agent’s idiosyncratic preference.23 Specifically, agent i’s

utility from adopting a product of quality q is random (and iid across agents), equal

to vq with probability αq, and equal to −M with probability 1 − αq. As before,

non-adoption yields zero utility. Upon inspection, agent i thus adopts good q with

probability αq and has expected utility αqvq; naturally, we assume 0 < αL < αH < 1

22The distinguishing feature of our model is that each agent’s neighborhood naturally resembles a
tree in configuration models GI for exploding I. This feature does not arise naturally in Acemoglu et
al’s model with one infinite sequence of agents. Indeed, Acemoglu et al.’s positive results (e.g. their
Theorem 4) rely on a carefully crafted, slowly exploding number of “guinea pig” agents, who have
little social information, and whose actions are thus very informative about their private signals.
In our model, such guinea pigs arise naturally, by virtue of being the first to enter the market.
Other differences between the models, such as the fact that their agents enter the game with private
information whereas ours choose to acquire private information, are not important for this contrast.

23In this model, the social signals from other agents’ adoption are imperfect, while private signals
from inspection are perfect. It would be natural to consider a model with imperfect private signals,
e.g. Ali (2018), but this would undermine the clean separation between the role of social information
(which determines the inspection decision) and private information (which determines the adoption
decision), that enhances the tractability of our analysis.
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and 0 < αLvL < αHvH . Given belief π, the cutoff cost at which the agent is indifferent

between inspecting and passing is given by c(π) = π(αHvH −αLvL) +αLvL, which is

linear and increasing in π. For simplicity, we assume an even prior, π0 = 1/2, and M

large enough so that agents never adopt blindly.24

We first study adoption on the (multi-type) directed random network described

in Section 3.1. An agent with degree d ∈ NΘ observes that aθ neighbors of type θ

have adopted and dθ − aθ have not. Let yqd,a be the probability of observing a ∈ NΘ

neighbors adopt given quality q (as always, omitting the time subscript). Given

π0 = 1/2, the posterior probability of high quality in this event equals

πd,a =
yHd,a

yHd,a + yLd,a
. (20)

We interpret Yd = (yqd,a)a,q as the agent’s information structure, and rank such struc-

tures by the Blackwell-order �BW ; this order is characterized by a mean-preserving

spread of the random posteriors Πd (e.g. Börgers (2009)).25

We start with best responses. Analogous to equation (5), the adoption curve of a

degree-d agent follows

ẋqd = αq
∑
a≤d

yqd,aF (c(πd,a)). (21)

Unpacking (21), yqd,a is the probability that a neighbors adopt; then the agent inspects

with probability F (c(πd,a)) and adopts with probability αq.

We now show that the informativeness of agent d’s adoption improves in her

information (as in Lemma 1). To do this, we strengthen our bounded hazard rate

assumption (6) and assume that

πF (c(π)) is convex and (1− π)F (c(π)) is concave in π. (22)

This is satisfied if κ ∼ U [αLvL, αHvH ], so the lowest-cost agent always inspects, while

the highest-cost agent never does.
24We could alternatively adopt Hendricks et al.’s (2012) model where quality and idiosyncratic

preferences are additively separable. Our approach is useful for the interpretation of Proposition 3.
25With perfect good news we have yHd,0 = 1 − yd and yLd,0 = 1. Thus, the random posterior Πd

equals πd,a = 1 for a > 0, which happens with probability π0yd, and πd,0 = π(yd) with the residual
probability. Since π(·) is a decreasing function, Πd is increasing in yd in the �BW order.
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Lemma 1′. Assume π0 = 1/2 and F satisfies (22). In a directed random network,

when an agent’s social information Yd Blackwell-improves, her adoption rate ẋqd rises

for q = H and falls for q = L.26

We now suppose that the network becomes large, and show that more links im-

prove learning. In large networks, an agent’s neighbors adopt independently with

probability xqθ := E[xqDθ ], where the expectation is taken over the random degree Dθ.

Thus, we can close (21) by computing the probability that a ≤ d adopt as

yqd,a =
∏
θ

(xqθ)
aθ(1− xqθ)dθ−aθ . (23)

Substituting (23) into (20) and (21) and taking expectations over Dθ = d yields a

2Θ-dimensional ODE for adoption probabilities xqθ, generalizing equation (10).

Theorem 1′. Assume π0 = 1/2 and F satisfies (22). In a large directed random

network, social learning and welfare improve with links: If D̃ �FOSD D,

(a) For any degree d, Ỹd �BW Yd,

(b) For any type θ, ỸD̃θ �BW YDθ .

We can now examine how social information depends on agents’ idiosyncratic

preferences for the two goods. We say there is a broadening of good q if αq rises and

vq declines so expected utility αqvq and the cutoff cost c(π) remain constant. That

is, the good becomes twice as popular, but the fans are half as enthusiastic. In the

opposite case, we speak of a narrowing .

Proposition 3. Assume π0 = 1/2 and F satisfies (22). In a large directed random

network, social information Yd rises for all d if

(a) There is a broadening of good H.

(a) There is a narrowing of good L.

(c) There is a broadening of both L,H such that αH/αL stays constant.

Parts (a,b) reflect the idea that there is more social information if more people

adopt H and fewer people adopt L. That is, social learning can be used to learn
26In the baseline model, Lemma 1 showed that information raises adoption when q = H. Here,

Lemma 1′ further shows that information lowers adoption when q = L. Thus, adoption becomes
more dependent on quality and thereby more informative.
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about popularity but not passion. In the limit, when αL = αH , there is no social

learning, even if vH is far higher than vL. Part (c) states that if both goods become

twice as popular, then social information also increases. Intuitively, lowering (αL,αH)

while fixing αH/αL amounts to losing the signal that neighbor j adopted with some

probability, leading to a Blackwell-decrease in information.

Finally, we return to the self-reflection and correlation effects. Appendix C.4

reconsiders Example 3 under imperfect social learning and confirms our finding that

adding the backward link j → i to the directed pair i → j harms i’s learning. As

before, the backward link makes j more pessimistic, lowering his adoption of both L

and H goods by equal amounts. This is analogous to losing j’s signal with positive

probability, and Blackwell-decreases i’s information.

Appendix C.5 reconsiders Example 6, where i observes j and k, and shows that

adding the correlating link j → k may benefit agent i. In the baseline model, the

correlating link lowers the probability that at least one of i’s neighbors adopts, and

thus lowers i’s social information. Central to this argument is the assumption that

one adoption is enough. With imperfect social learning, we present a cost distribution

F (κ) where high-cost agents require two adoptions to inspect. The correlating link

then raises the probability that both adopt, and thus raises i’s social information.

This is consistent with Centola’s (2010) experiment where clustering raises social

learning.

5 Conclusion

Social learning plays a crucial role in the diffusion of new products (e.g. Moretti, 2011),

financial innovations (e.g. Banerjee et al., 2013), and new production techniques (e.g.

Conley and Udry, 2010). This paper proposes a tractable model of social learning

on large random networks, characterizes equilibrium in terms of simple differential

equations, and studies the effect of network structure on learning dynamics. The

model can be used to structurally estimate diffusion in real-world networks while

maintaining Bayesian rationality.

We started the paper by asking about the effect of clustering and connectedness

on learning and adoption. In our baseline model, we showed that clustering unam-
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biguously slows learning by correlating neighbors’ adoption decisions. Connectedness

thus improves social information as long as the network remains sparse, but eventually

harms learning as the network becomes clustered. And these results on information

directly apply to adoption under our bounded hazard rate assumption (6).

Our analysis goes beyond traditional contagion models of behavior, such as Morris

(2000). Indeed, consider a binary distribution F with atoms at κ = 0 and κ̄ > π0 as

in footnote 13. Behavior is then mechanical, with agents adopting with probability

F (0) if they see no adoption, and with certainty otherwise. In this limit case of our

model, network density still enhances learning (Theorem 1 applies), but we lose the

adverse effects of the backward link (Example 3) and the correlating link (Example

6). Moreover, in contrast to Section 4.1, a clique maximizes social learning.27

Moving forwards, one can take the model in a number of different directions. One

could study the effect of policies, such as changing the price of the product (e.g.

Campbell (2013)) or seeding the network (e.g. Akbarpour et al. (2020)). While we

studied correlation neglect, one could allow for other mis-specifications of beliefs (e.g.

Bohren and Hauser (2020)). Finally, one could endogenize the timing of moves by

allowing skeptical agents to delay their decision (e.g. Chamley and Gale (1994)).

27Proof: In the I-clique, i observes an adoption at time ti iff tj ≤ ti and κj = 0 for some j 6= i.
This event is also necessary for i to observe an adoption in any other network.

34



Appendix

A Proofs from Section 2

A.1 Proof of Proposition 1

We will characterize equilibrium adoption in a general random network G = (I,Ξ, µ)

via a system of ODEs, albeit in a large state space. Denote the state of the network

by λ = {λi}i∈I , where λi ∈ {∅, a, b}. Let λi = ∅ if i has yet to enter, t ≤ ti; λi = a if

i has entered and adopted; and λi = b if i has entered and not adopted. Given state

λ, let λ−i denote the same state with λi = ∅.
Fix a network G and agents’ signals ξ, and condition on a high-quality product,

q = H. We can then describe the distribution over states by zλ,G,ξ (as always omitting

the dependence on time t). Figure 6 illustrates the evolution of the state via a Markov

chain in a three-agent example. Probability mass flows into state λ = (λi, λj, λk) =

(∅, a, b) from state λ−j as agent j enters and adopts, and from λ−k as agent k enters

and doesn’t adopt. Similarly, probability flows out of state λ, and into states (a, a, b)

and (b, a, b), as agent i enters.

Quantifying these transition rates, we now argue that the equilibrium distribution

over the states λ evolves according to the following ODE

(1−t)żλ,G,ξ = −
∑
i:λi=∅

zλ,G,ξ +
∑

i:λi=a,
∃j∈Ni(G):λj=a

zλ−i,G,ξ +
∑

i:λi=a,
∀j∈Ni(G):λj 6=a

zλ−i,G,ξF (π(yi,ξi)) +
∑

i:λi=b,
∀j∈Ni(G):λj 6=a

zλ−i,G,ξ(1−F (π(yi,ξi)))

(24)

To close (24), the probability that i observes an adoption at time ti = t equals

yi,ξi = E[yi,G,ξ] with yi,G,ξ = Pr(∃j ∈ Ni(G) : λj = a|λi = ∅) = 1
1−t
∑
zλ,G,ξ where the

sum is over all λ with λi = ∅ and λj = a for at least one j ∈ Ni(G).

To derive (24), fix a state λ. Agents i that have not yet entered, λi = ∅, enter
uniformly over time [t, 1], and so probability escapes at rate zλ,G,ξ/(1 − t) for each

such agent. This out-flow is the first term in (24). Turning to in-flows, if λi = a then

in state λ−i agent i enters uniformly over time [t, 1] and adopts blindly if one of her

neighbors j ∈ Ni(G) has adopted (the second term in (24)), and after inspecting with
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Markov transitions

��j =(;, ;, b)

��k =(;, a, ;)

�=(;, a, b)

(a, a, b)

(b, a, b)

2

Figure 6: Illustrative Markov Transitions underlying Proposition 1.

probability F (π(yi,ξi)) if none of her neighbors has adopted (the third term in (24)).

If λi = b, inflows from λ−i are similarly captured by the fourth term in (24).

Given (24), the existence of a unique equilibrium follows from the Picard-Lindelöf

theorem since the boundedness of f implies the system is Lipschitz.28

Remark. The system of ODEs (24) implies equilibrium existence and uniqueness.

But it is less useful as a tool to compute equilibrium numerically since there are

3I × 2I×I × |Ξ| triples (λ,G, ξ), making it impossible to evaluate (24) numerically.

Even if the network G is common knowledge, there are still 3I states λ.

A.2 Proof of Lemma 2

We wish to study agent i’s adoption decision given that no other agent in the (I+ 1)-

clique has yet adopted. Using the notation of Appendix A.1, the probability that

i observes at least one adoption when she enters at ti equals y = 1 − Pr(λj 6=
a for all j 6= i|λi = ∅). When agent i enters and no other agent has yet adopted,

she thus adopts with probability F (π(y)) = φ(0, y). Agents who have not adopted

may either not have entered (λj = ∅) or decided not to adopt (λj = b). Let

zν := Pr(λj = ∅ for ν others j 6= i, and λj = b for the other I − ν|λi = ∅).

Clearly, y = 1−∑I
ν=0 zν .

We now characterize {zν} recursively. For ν = I, the probability that everyone is

asleep is zI = (1− t)I . For states ν < I, probability flows in from state ν + 1 as one
28In fact, if we assume that time t is discrete rather than continuous, this proof shows more

strongly that our game - much like most herding models - is dominance-solvable.
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of these agents enters and chooses not to adopt given that no-one else had adopted;

this rate is given by ν+1
1−t zν+1(1 − φ(0, y)). There is also outflow at rate ν

1−tzν as one

of the ν agents enters; this scales down the time-s inflow by a factor
(

1−t
1−s
)ν at time-t.

All told,

zν,t =

∫ t

0

(
1− t
1− s

)ν
zν+1,s

ν + 1

1− s (1−φ(0, ys))ds = (ν+1)(1−t)ν
∫ t

0

zν+1,s
1− φ(0, ys)

(1− s)ν+1
ds

(25)

We claim that this can be inductively written as

zν,t =
I!

ν!
(1− t)ν

∫ t

0

∫ s

0

...

∫ r

0︸ ︷︷ ︸
I−ν integrals

[(1− φ(0, yq)) . . . (1− φ(0, ys))] dq...drds. (26)

For ν = I this reduces to zI,t = (1 − t)I . For the induction step, assume (26) holds

for ν + 1 and substitute into (25). This becomes

zν,t = (ν+1)(1−t)ν
∫ t

0

[
I!

(ν + 1)!
(1−s)ν+1

∫ s

0

...

∫ r

0︸ ︷︷ ︸
I−ν−1 integrals

[(1− φ(0, yq)) . . . (1− φ(0, yr))] dq . . . dr

]
1− φ(0, ys)

(1− s)ν+1
ds

which collapses to (26).

The integration domain of (26) consists of all (I − ν)-tuples (q, . . . , r, s) with

0 ≤ q ≤ . . . ≤ r ≤ s ≤ t and the integrand is symmetric in (q, . . . , r, s). Since there

are (I − ν)! permutations of the integration variables, (26) equals

zν,t =
I!

ν!(I − ν)!
(1− t)ν

∫ t

0

∫ t

0

...

∫ t

0︸ ︷︷ ︸
I−ν integrals

[(1− φ(0, yq)) . . . (1− φ(0, ys))] dqdr . . . ds

=

(
I

ν

)
(1− t)ν

(∫ t

0

(1− φ(0, ys))ds

)I−ν
.

Summing over ν and using the binomial formula finishes the proof

1− yt =
I∑

ν=0

zν,t =

(
(1− t) +

∫ t

0

(1− φ(0, ys))ds

)I
=

(
1−

∫ t

0

φ(0, ys)ds

)I
.

37



B Proofs from Section 3

B.1 Proof of Proposition 2

We break the proof into four steps:

(1) Define the branching process.

(2) Characterize the limit adoption Xθ(c) and the equilibrium limit adoption x∗θ

associated with the branching process.

(3) Show that the induced cutoffs (c∗d) are a limit equilibrium by showing that learn-

ing curves y∗I,d in GI converge to those associated with the branching process.

(4) Show that the limit equilibrium is unique.

While steps 1 and 2 may seem clear enough for the directed networks studied here,

we spell them out in formal detail to prepare the ground for the more involved case

of undirected networks with cliques in Proposition 2′.

B.1.1 Directed Branching Process

Here we formalize the idea that the random network GI locally approximates a tree

for large I. Following Sadler (2020, Section 8.2), for any degree d ∈ NΘ we consider

a multi-type branching process Td where offspring equals d in the first step, and is

distributed according to D in all subsequent steps.29 For any radius r ∈ N, let Td,r
be the random rooted graph generated by Td, truncated after step r.

Turning to our finite networks, for agent i with degree d in network G, define i’s

r-neighborhood Gi,r as the subgraph consisting of all nodes and edges in G that can

be reached from i via paths of length at most r; e.g. for r = 1, Gi,r consists of i,

her outlinks, and her neighbors. Let GI,d,r be the random rooted graph generated by

realizing a network G from GI , choosing an agent i with degree d at random, and

truncating G to i’s r-neighborhood Gi,r.

We can now state our formal result, which mirrors Sadler’s Lemma 1.
29In contrast, Sadler (2020) uses the forward distribution D′ − 1 to account for the friendship

paradox in his undirected networks. We follow that approach in Appendix B.4.1.
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Lemma 3. GI,d,r can be coupled to Td,r with probability ρ̃I,d,r, where limI→∞ ρ̃I,d,r = 1

for all d, r.

Proof. We uncover the rooted graph Gi,r following a breadth-first search: Start by

connecting the dθ outlinks of root i to randomly chosen type-θ nodes for all θ; then

connect the outlinks of these neighbors, and so on until Gi,r is realized. The coupling

with the truncated branching process Td,r succeeds if at every step in this process, the

respective type-θ outlink connects to a previously unvisited type-θ node; this could

fail (i) if type-θ outlinks cannot be connected because no type-θ node was realized,

or (ii) by realizing a self-link or multi-link (which we then prune from the network),

or (iii) by realizing a link to a node that has already been visited (then Gi,r is not

a tree). Since the expected number of nodes in Gi,r is finite, the chance of either of

these three causes of failure (aggregated over all |Gi,r| nodes) vanishes for large I.

B.1.2 Limit Adoption

Here we compute limit adoption probabilities of agents on an infinite random tree,

generated by the branching process. Specifically, for any cost-cutoffs c = (cd) define

the limit adoption probabilities as the solution Xθ(c) of the ODE

ẋθ = E

[
φ

(
1−

∏
θ′

(1− xθ′)Dθ,θ′ , π−1(cDθ)

)]
. (27)

That is, when all agents in the branching process employ cost-cutoffs c, an agent with

degree d = (dθ′) sees an adoption with probability 1−∏θ′(1− xθ′)dθ′ , in which case

she adopts if κ ≤ cd. Taking expectations over Dθ yields (27). This nests as a special

case the solution x∗θ = Xθ(c
∗) of (10) for cost cutoffs c∗d := π

(
1−∏θ′(1− x∗θ′)dθ′

)
.

B.1.3 Limit Equilibrium

We now turn to the proof of Proposition 2 proper, and show that c∗ = (c∗d) is a limit

equilibrium. In analogy to the limit probabilities Xθ(c) and x∗θ, we write YI,d(c) for

the social learning curve in GI when agents use cutoffs c = (cd), and y∗I,d = YI,d(c
∗).
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Then, c∗ is a limit equilibrium iff limI→∞ π(y∗I,d) = c∗d or equivalently, iff

lim
I→∞

y∗I,d = 1−
∏
θ

(1− x∗θ)dθ . (28)

Given a finite number of agents I, equation (28) fails for the usual two reasons:

correlating and backward links. We now show that these concerns vanish as I grows

large. Lemma 3 showed that any agent i’s neighborhood in G resembles a tree. We

complement this argument by showing that i’s social learning in our model only

depends on i’s neighborhood in G.

To formalize this statement, say that a path i = i0 → i1 → . . . → ir of length

r is a learning path of agent i if tiν−1 > tiν for all ν = 1, . . . , r; the chance of this

is 1/(r + 1)!. Let pθ,r be the probability that a type-θ node has no learning path

of length r in the infinite random tree generated by the branching process. The

expected number of length-r paths is bounded above by (maxθ
∑

θ′ E[Dθ,θ′ ])
r. Thus,

pθ,r ≥ 1− (maxθ
∑

θ′ E[Dθ,θ′ ])
r/(r + 1)! and so limr→∞ pθ,r = 1. For an agent i with

degree d = (dθ), the probability of the event E that “all of i’s neighbors have no

learning path of length r − 1” equals pd,r :=
∏

θ p
dθ
θ,r−1, with limit limr→∞ pd,r = 1.

Turning from the branching process to the random network GI , note that the

probability of event E depends on the network G only via i’s r-neighborhood Gi,r.

Thus, conditional on the coupling of GI,d,r and Td,r in Lemma 3, pd,r also equals

the probability of E in GI . All told, write ρI,d,r = ρ̃I,d,rpd,r for the joint prob-

ability that the coupling succeeds and of event E . Then limr→∞ limI→∞ ρI,d,r =

limr→∞ pd,r limI→∞ ρ̃I,d,r = 1.

We can now study adoption probabilities on i’s neighborhood. Write y∗I,d,r for i’s

probability of observing an adoption, conditional on the intersection of three events:

i’s r-neighborhood being coupled to the branching process, i having d neighbors, and

none of these neighbors having a learning path of length r. Similarly, write x∗θ,r for

the adoption probability of a type-θ agent in the branching process, conditional on

her not having a learning path of length r. By construction y∗I,d,r = 1−∏θ(1−x∗θ,r)dθ .

We now return to equation (28), which states that the social learning curve on

GI converges to the learning curve on the branching process. The triangle inequality
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implies∣∣∣∣∣y∗I,d − (1−
∏
θ

(1− x∗θ)dθ)
∣∣∣∣∣ ≤ ∣∣y∗I,d − y∗I,d,r∣∣+

∣∣∣∣∣y∗I,d,r − (1−
∏
θ

(1− x∗θ,r)dθ)
∣∣∣∣∣+

∣∣∣∣∣∏
θ

(1− x∗θ,r)dθ −
∏
θ

(1− x∗θ)dθ
∣∣∣∣∣

≤ (1− ρI,d,r) + 0 +
∑
θ

dθ(1− pθ,r) (29)

for any r. Since the LHS does not depend on r, we get

lim sup
I→∞

∣∣∣∣∣y∗I,d − (1−
∏
θ

(1− x∗θ)dθ)
∣∣∣∣∣ ≤ lim sup

r→∞
lim sup
I→∞

(1− ρI,d,r) +
∑
θ

dθ(1− pθ,r) = 0.

This implies (28) and thereby establishes that (c∗d) is indeed a limit equilibrium.

B.1.4 Uniqueness

Uniqueness of the limit equilibrium follows immediately: Since the asymptotic inde-

pendence of adoptions (28) does not rely on the optimality of the cutoffs (c∗d), the

same argument implies that for any cutoffs c = (cd) 6= c∗

lim
I→∞

Y I,d(c) = 1−
∏
θ

(1−Xθ(c))
dθ . (30)

But since the solution to (10) is unique, we have π(1−∏θ(1−Xθ(c))
dθ) 6= cd. Thus,

limI→∞ π(YI,d(c)) 6= cd, and so c is not a limit equilibrium.

B.2 Example 5: Two Links vs Infinite Chain

When agent i has two uninformed neighbors j, k, each neighbor’s adoption curve

equals xj = xk = F (π0)t. Hence the probability that at least one adopts is

y(t) := 1− (1− F (π0)t)2. (31)

With an infinite chain, agent i’s social learning curve is given by ẋ = Φ(x) ≤ 1− (1−
x)(1− F (π0)). Solving this ODE,

xt ≤ ζ(t) := 1− 1− F (π0)e(1−F (π0))t

1− F (π0)
. (32)
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We wish to show that y(t)− ζ(t) ≥ 0 for all t. It suffices to show this inequality for

t = 1; this follows since y(t)− ζ(t) is concave and y(0)− ζ(0) = 0.

Setting t = 1, abbreviating δ := 1− F (π0) ∈ (0, 1], and multiplying by δ, we thus

wish to show that ξ(δ) := 1−(1−δ)eδ−δ3 ≥ 0. Differentiating, one can see that ξ has

a unique local extremum δ∗ on [0, 1] and that ξ′′(δ∗) ≤ 0. Thus, it is quasi-concave

with ξ(0) = ξ(1) = 0, and hence is positive everywhere.

B.3 The Single-Crossing Lemma

We use the following version of Milgrom and Weber (1982, Lemma 2), that allows for

weak inequality at the initial condition.

Lemma 4. Let (xt), (x̃t) solve ẋ = ψ(x) and ˙̃x = ψ̃(x̃) with x0 = x̃0 = 0, where

ψ(x) > ψ̃(x) > 0 for all x ∈ (0, 1] and ψ(0) = ψ̃(0) > 0. Then xt > x̃t for all t > 0.

Proof. For any ε > 0, define xε : [ε, 1] → R as the solution of ẋε = ψ(xε) with initial

condition xεε = x̃ε. Then xεt > x̃t for all t > ε by Milgrom and Weber 1982, Lemma 2.

Since the solution of a differential equation is continuous in its initial conditions,

we have limε→0 x
ε
t = xt and so xt ≥ x̃t for all t > 0. But xt ≥ x̃t > 0 implies xt′ > x̃t′

for all t′ > t, and so we get xt > x̃t for all t > 0.

B.4 Proof of Proposition 2′

The proof of Proposition 2′ mirrors the proof Proposition 2. Instead of repeating all

of the arguments, we only discuss where they need to be adapted.

B.4.1 Undirected Branching Process

Define a two-type branching process with bilateral and triangle types. In the first step,

the number of offspring are given by some fixed degree (d̄, 2d̂). In every subsequent

step, the (forward) degree is drawn from (D̄′−1, 2D̂) for bilateral offspring, and from

(D̄, 2(D̂′ − 1)) for triangle offspring; all draws are independent and generate distinct

nodes, including the draws from two triangle offspring on the same triangle. The

resulting undirected network consists of the tree generated by the branching process

and the links connecting neighbors on any given triangle.
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Next, we couple the r-neighborhoods30 of agent i with degree (d̄, 2d̂) in the finite

network and the branching process, GI,(d̄,2d̂),r and T(d̄,2d̂),r. This is where we have to

account for the friendship paradox: When uncovering i’s neighbor j on a bilateral link,

the probability distribution of j’s bilateral degree Pr(D̄j = d) must be re-weighted by

d/E[D̄]; that is, it is drawn from D′, defined in (12). Also, one of j’s D′ bilateral links

goes back to i, and so only D̄−1 go forward to additional nodes. Since j’s bilateral and

triangle links D̄j, D̂j are independent, D̂j simply follows D̂. All told, conditional on a

successful coupling, the “forward-degree” of a bilateral neighbor follows (D̄ − 1, 2D̂).

The argument that the degree of a triangle neighbor follows (D̄, 2(D̂′−1)) is analogous.

B.4.2 Limit Adoption

Following Section B.1.2, we now characterize neighbors’ adoption probabilities in the

infinite network generated by the branching process for arbitrary strategies c = (cd̄,d̂).

Indeed, let X̄(c), X̂(c) be the solution of

˙̄x = E
[
φ
(

1− (1− x̄)D̄
′−1(1− x̂)2D̂, π−1(cD̄′,D̂)

)]
(33)

˙̂x = E
[
φ
(

1− (1− x̄)D̄(1− x̂)2(D̂′−1), π−1(cD̄,D̂′)
)]
. (34)

We claim that (i) X̄(c) is the adoption probability of i’s bilateral neighbor j at ti, and

(ii) X̂(c) is first adopter probability in a triangle (i, j, k); more precisely, (1− X̂(c))2

is the probability that neither j nor k have adopted at ti.

Claim (i) follows by the standard argument that j has D′ neighbors, but that

includes i, who has not yet adopted at t < ti. Claim (ii) is more subtle and follows by

the proof of Lemma 2. As in that proof define zν as the probability that ν ∈ {0, 1, 2}
of i’s neighbors j, k in a given triangle have not yet entered, while the other 2 − ν
have entered but chose not to adopt. In the triangle, when one of the remaining ν

neighbors enters she observes no adoption and hence adopts herself with probability

φ(0, y), where y := 1 −∑2
ν=0 zν . Here a triangular neighbor j has additional D̄

bilateral links and D̂′ − 1 additional triangular link pairs, so observes an adoption

with probability 1− (1− x̄)D̄(1− x̂)2(D̂′−1), and is assumed to employ the exogenous
30In undirected networks, we define an agent’s r-neighborhood of agent i as all agents and all

undirected edges that can be reached from agent i via paths of length at most r.
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cutoffs cD̄,D̂′ upon seeing no adoption. Thus, from i’s perspective, j ’s adoption rate

is given by the RHS of (34). Subject to substituting this term for φ(0, y), the proof

of Lemma 2 applies as stated, yielding (34).

The solution X̄(c), X̂(c) of (33−34) nests as a special case the solution x̄∗ =

X̄(c∗), x̂∗ = X̂(c∗) of (18−19) for cost cutoffs c∗
d̄,d̂

= π(1− (1− x̄∗)d̄(1− x̂∗)2d̂).

B.4.3 Limit Equilibrium, Uniqueness, and Limit of Equilibria

The arguments in Sections B.1.3, B.1.4, and D.1 only require adapting the notation.

Indeed, write YI,d̄,d̂(c) for the social learning curve in ĜI when agents use cutoffs

c = (cd̄,d̂), and y
∗
I,d̄,d̂

= YI,d̄,d̂(c
∗). Then, at the most general level, (30) generalizes to

lim
I→∞

sup
c
|YI,d̄,d̂(c)− [1− (1− X̄(c))d̄(1− X̂(c))2d̂]| = 0. (35)

The fact that c∗ is a limit equilibrium then follows by substituting c∗ into (35) and

recalling that c∗
d̄,d̂

= π(1− (1− x̄∗)d̄(1− x̂∗)2d̂).

Uniqueness follows by substituting any other cutoffs c 6= c∗ into (35) and noting

that cd̄,d̂ 6= π(1− (1− X̄(c))d̄(1− X̂(c))2d̂).

Finally, the exact equilibria cI of ĜI converge to the limit equilibrium c∗ by the

same reasoning as in Online Appendix D.1, invoking Arzela-Ascoli to obtain a con-

vergent subsequence of cI and then using (35) to show that its limit must equal c∗.

C Imperfect Social Learning

C.1 Proof of Lemma 1′

Given π0 = 1/2, the unconditional probability of (d, a) is yd,a = (yHd,a + yLd,a)/2, and

equation (20) implies that yHd,a = 2πd,ayd,a and yLd,a = 2(1 − πd,a)yd,a. Thus, we can

rewrite (21) as

ẋHd = 2αH
∑
a≤d

yd,a [πd,aF (c(πd,a))] = 2αHE[ΠdF (c(Πd))] (36)

ẋLd = 2αL
∑
a≤d

yd,a [(1− πd,a)F (c(πd,a))] = 2αLE[(1− Πd)F (c(Πd))] (37)
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where the expectation E[·] is taken over the realizations πd,a of the random posterior

Πd. Given assumption (22), a mean-preserving spread of Πd raises the RHS of (36)

and lowers the RHS of (37).

C.2 Proof of Theorem 1′

For part (a), we discretize time {t∆} for t = 0, 1, 2, ... and argue by induction over

t. That is, we interpret (21) as a finite difference equation, establish the Blackwell-

rankings for any ∆, and then conclude by taking the continuous time limit ∆→ 0.

At t = 0, there is no social information, so the Blackwell-ranking obtains (weakly).

Now assume by induction that social information is ranked by Ỹd,t �BW Yd,t at all

times t < s. We first argue that adoption rates then obey the same ranking

˙̃xHθ,t = E[ ˙̃xH
D̃θ,t

] ≥ E[ẋH
D̃θ,t

] ≥ E[ẋHDθ,t] = ẋHθ,t.

The first (weak) inequality follows by induction and (the discrete-time version of)

Lemma 1′. The second inequality follows also by Lemma 1′, together with the in-

equality D̃θ �FOSD Dθ and the fact that observing (FOSD) fewer neighbors amounts

to sometimes losing some adoption signals, which Blackwell-decreases social informa-

tion; it is strict when D̃θ �FOSD Dθ. Integrating over t < s, we get x̃Hθ,s ≥ xHθ,s, with

strict inequalities if D̃θ �FOSD Dθ. The analogous argument implies x̃Lθ,s ≤ xLθ,s.

We now show that observing type-θ’s time-s adoption in the network generated

by D̃ is Blackwell-sufficient for observing this under D. The above imply

x̃Hθ,s
x̃Lθ,s
≥
xHθ,s
xLθ,s

and
1− x̃Hθ,s
1− x̃Lθ,s

≤
1− xHθ,s
1− xLθ,s

. (38)

Denote by Πθ,s the random posterior of an agent in network D with one type-θ neigh-

bor and no other neighbors, and by πθ,1,s, πθ,0,s the realized posteriors upon observing

that type-θ neighbor adopt/not-adopt; analogously define Π̃θ,s and π̃θ,1,s, π̃θ,0,s for

network D̃. Bayes’ rule, (20), and (38) imply π̃θ,1,s ≥ πθ,1,s ≥ πθ,0,s ≥ π̃θ,0,s, so Π̃θ,s

is a mean-preserving spread of Πθ,s and observing type-θ’s adoption in the network

generated by D̃ is Blackwell-sufficient for observing this under D. Since adoption is

independent across neighbors, we get Ỹd,s �BW Yd,s,concluding the induction step.
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Part (b) follows from ỸD̃θ,s �BW YD̃θ,s �BW YDθ,s. The first inequality follows by

substituting the random degree D̃θ into part (a). The second inequality follows by

our above argument that observing (FOSD) fewer neighbors amounts to sometimes

losing some adoption signals.

C.3 Proof of Proposition 3

(a) and (b). We follow the proof of Theorem 1′. Let α̃H ≥ αH and α̃L ≤ αL. We

must show that Ỹd �BW Yd. At t = 0, there is no social information, so the Blackwell-

ranking obtains (weakly). Now assume by induction that Ỹd,t �BW Yd,t for all t < s.

Since there is more information, α̃H ≥ αH , and α̃L ≤ αL, equation (21) and the proof

of Lemma 1′ imply that x̃Hθ,s ≥ xHθ,s and x̃Lθ,s ≤ xLθ,s. Then, as in Theorem 1′, observing

type-θ’s adoption state is Blackwell-better for adoption rates α̃q compared to αq. By

independence across neighbors, Ỹd,s �BW Yd,s, concluding the induction step.

(c) As in parts (a,b), suppose by induction that Ỹd,t �BW Yd,t for all times t < s.

Since α̃H/αH = α̃L/αL =: ξ > 1, the proof of Lemma 1′ implies ˙̃xHθ,t ≥ ξẋHθ,t and
˙̃xLθ,t ≤ ξẋLθ,t, and so x̃Hθ,s > xHθ,s and x̃Hθ,s/x̃Lθ,s ≥ xHθ,s/x

L
θ,s. Moreover, (1−xHθ )/(1−xLθ ) =

(1/xHθ −1)/(1/xHθ −xLθ /xHθ ) falls in both xHθ and in xHθ /xLθ , and so (1−x̃Hθ,s)/(1−x̃Lθ,s) ≤
(1− xHθ,s)/(1− xLθ,s). Thus, observing whether or not a type-θ neighbor has adopted

is more informative under α̃q compared to αq.

C.4 Backward Links

Compare the directed and undirected pair in Example 3. With i → j, agent j has

no information, and his adoption follows ẋqj = αqF (c(π0)). With i ↔ j, define x̄q to

be j’s adoption probability conditional on quality q and t ≤ ti. His posterior upon

observing no adoption becomes π := (1− x̄H)π0/((1− x̄H)π0 +(1− x̄L)(1−π0)) < π0.

Analogous to (13), ˙̄xq = αqF (c(π)).

We claim that agent i has Blackwell-more information in the directed pair than

in the undirected pair. Indeed, x̄q = ζxqj for ζ := F (c (π)) /F (c(π0)) < 1. That is,

observing j in the undirected pair is like observing him in the directed pair losing the

signal with probability 1− ζ, and hence Blackwell-inferior.
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C.5 Correlating Links

As in Example 6, suppose agent i initially observes agents j, k, and consider the

effect of an additional link j → k. Suppose agents’ cost is equi-likely low or high,

κ ∈ {0, κ̄}, with κ̄ = c(αHπ0/[α
Hπ0 + αL(1− π0)]), and suppose the agent inspects if

indifferent. The low-cost agent always inspects, and information has no value to her.

The high-cost agent only benefits from social information if it pushes her posterior

strictly above κ̄, which only ever happens in either network when i observes both

j and k adopt. Thus, we need to compare the (unconditional) probability of this

event x{j,k},i = π0x
H
{j,k},i + (1 − π0)xL{j,k},i and the induced posterior belief π{j,k},i

across the two networks. Given π0 = 1/2, the value of information then equals
1
2
x{j,k},i(π{j,k},i − κ̄).

In either network, k has no information and only her low-cost type inspects;

the probability that she adopts good q by time t thus equals 1
2
αqt. Without the

correlating link, by symmetry and independence of j and k, the probability they both

adopt product q equals xq{j,k},i = (1
2
αqt)2 and the posterior belief equals π{j,k},i =

(αH)2π0/[(α
H)2π0 + (αL)2(1− π0)].

The correlating link raises j’s adoption probability conditional on k having adopted:

If j enters first, only low-cost j adopts and the probability is unchanged; but if k enters

first, j inspects with certainty. Thus, the joint probability that both j and k adopt

rises to x̂q{j,k},i = 1
2
αqt · 3

4
αqt, while the posterior belief is unchanged, π̂{j,k},i = π{j,k},i.

All told, the correlating link j → k is valuable to i because it increases the proba-

bility of observing j adopt in the event that k also adopts, which is precisely when

this information is most valuable to i. Note the contrast to Example 6, where j’s

adoption was valuable to i in the complementary event, when k had not adopted.
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Online Appendix

D Analysis from Section 3

D.1 Limit of Equilibria

Proposition 2 shows that (c∗d) are the unique cost-cutoffs that are approximately

optimal in GI for all large I. This is the appropriate equilibrium notion for our

“macro-economic” perspective, whereby the finite agents simplify their problem by

treating the economy as infinite, and are vindicated by the fact that their solution to

the simplified problem is indeed approximately optimal for large I.

An alternative “micro-economic” solution concept might assume that agents can

somehow overcome the complexity of the finite models GI and play the exact equilibria

(cI,d). The uniqueness of the limit equilibrium suggests that (cI,d) converge to (c∗d).31

Here, we confirm this conjecture. For notational simplicity we state the proof for

a single type θ, so the number of outlinks (or degree) d is an integer rather than a

vector. All told, we need to prove that for all d

lim
I→∞

cI,d = c∗d. (39)

As a preliminary step, note that in the equilibrium cI = (cI,d) of GI , social informa-

tion yI,d is equi-Lipschitz as a function of t and so, too, are the cutoffs cI,d = π(yI,d).

By the Arzela-Ascoli theorem, the sequence of cutoff vectors cI = (cI,d) has a sub-

sequence which converges to some c∞ = (c∞,d) (pointwise for all d). We write

x∞ := X(c∞) for the adoption probabilities associated with this strategy in the

branching process, as defined in (27).

Equation (39) now follows from the claim (proved below) that the limit behavior

c∞ is indeed optimal, given the induced adoption probabilities x∞, i.e.

c∞,d = π(1− (1− x∞)d). (40)
31As always, the cost cutoffs also depend on t ∈ [0, 1], which we omit to simplify notation; when

talking about convergence, we refer to the topology of uniform convergence in t.
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Indeed, given (40) we substitute into (27) (for a single type θ) to get

ẋ∞ = E
[
φ
(
1− (1− x∞)D, π−1(c∞,D)

)]
= E

[
Φ
(
1− (1− x∞)D

)]
.

That is, x∞ solves (10) and so x∞ = x∗. Thus, the limit of the (subsequence of)

equilibria in GI is an equilibrium in the branching process, i.e. (c∞,d) = (c∗d). Since

the solution to (10) and the associated cost cutoffs are unique, the entire sequence cI
(rather than just a subsequence) must converge to c∞, finishing the proof.

Proof of (40). By the triangle inequality,∣∣c∞,d − π(1− (1− x∞)d)
∣∣ ≤ |c∞,d − cI,d|+ ∣∣cI,d − π (1− (1−X(cI))

d
)∣∣

+
∣∣π (1− (1−X(cI))

d
)
− π

(
1− (1−X(c∞))d

)∣∣
Along the subsequence of I as cI converges to c∞, the first term on the RHS vanishes.

The third term vanishes since the operator X and the function π are continuous.

Turning to the second term, note that the proof of (28) and in particular the upper

bound in (29) do not depend on the strategy c∗, and so implies more strongly that

lim
I→∞

sup
c
|YI,d(c)− (1− (1−X(c))d)| = 0. (41)

The equilibrium cutoffs cI = (cI,d) additionally satisfy π(YI,d(cI)) = cI,d, and so

lim
I→∞

∣∣cI,d − π(1− (1−X(cI))
d)
∣∣ = 0.

�

D.2 Undirected, Multi-type Networks

Here we introduce heterogeneous types into the undirected networks of Section 3.2. As

in Section 3.1, every agent independently draws a finite type θ and then every agent

with type θ independently draws a vector of link-stubs (Dθ,θ′)θ′ to agents of type θ′.

We additionally impose the accounting identity Pr(θ)E[Dθ,θ′ ] = Pr(θ′)E[Dθ′,θ] and an

additional independence assumption on (Dθ,θ′)θ′ across θ′. Next, we connect matching

link-stubs (i.e. type (θ, θ′)-stubs with (θ′, θ)-stubs) at random, and finally discard
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self-links, multi-links, and left-over link-stubs; the accounting identity guarantees

that a vanishing proportion of link-stubs are discarded as I → ∞. The additional

independence assumption in turn implies that the typical type-θ′ neighbor of a type-θ

agent i has D′θ′,θ links to type-θ agents (including i), and Dθ′,θ′′ links to type-θ′′ agents

for all θ′′ 6= θ. That is, the friendship paradox only applies to agent i’s own type θ.

When agent i enters, write x̄θ,θ′ for the probability that her neighbor θ′ has adopted

conditional on not having observed i adopt earlier. By the same logic as in the body

of the paper, adoption probabilities in the branching process follow

˙̄xθ,θ′ = E

[
φ

(
1− (1− x̄θ′,θ)D

′
θ′,θ−1

∏
θ′′ 6=θ

(1− x̄θ′,θ′′)Dθ′,θ′′ , 1− (1− x̄θ′,θ)D
′
θ′,θ
∏
θ′′ 6=θ

(1− x̄θ′,θ′′)Dθ′,θ′′
)]

(42)

D.3 Adding Links in Undirected Networks

Here we prove the claim from Section 3.2 that additional links contribute to social

learning in undirected networks. As in Theorem 1, given link distributions D, D̃,

write y∗d = 1− (1− x̄∗)d and ỹ∗d as the corresponding social learning curves. Letting

�LR represent the likelihood ratio order, we then have

Theorem 1′′. Assume F has a bounded hazard rate, (6). Social learning and welfare

increase with links: If D̃ �LR D
(a) For any degree d, ỹ∗d ≥ y∗d,

(b) In expectation over the degree, E[ỹ∗
D̃

] ≥ E[y∗D].

Proof. First observe that D̃ �LR D implies D̃′ �LR D′ since

Pr(D̃′ = d̄)

Pr(D̃′ = d)
=
d̄

d
· Pr(D̃ = d̄)

Pr(D̃ = d)
≥ d̄

d
· Pr(D = d̄)

Pr(D = d)
=

Pr(D′ = d̄)

Pr(D′ = d)
.

Hence D̃′ �FOSD D′ . Under assumption (6), φ(1 − (1 − x)d−1, 1 − (1 − x)d) =

1− 1
1−x [(1− x)d(1− F (π(1− (1− x)d))] rises in d since the term in square brackets

increases in (1 − x)d. Thus the RHS of (13) FOSD-increases in D′, and so too does

its solution x̄∗ by the Single Crossing Lemma. This implies ỹ∗d ≥ y∗d. Part (b) then

follows from the fact that E[yD] = E[1− (1− x̄)D] increases in D.
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