Skip to main content
eScholarship
Open Access Publications from the University of California

Evolutionary relationships among shell proteins of carboxysomes and metabolosomes

Abstract

Bacterial microcompartments (BMCs) are self-assembling prokaryotic organelles which encapsulate enzymes within a polyhedral protein shell. The shells are comprised of only two structural modules, distinct domains that form pentagonal and hexagonal building blocks, which occupy the vertices and facets, respectively. As all BMC loci encode at least one hexamer-forming and one pentamer-forming protein, the evolutionary history of BMCs can be interrogated from the perspective of their shells. Here, we discuss how structures of intact shells and detailed phylogenies of their building blocks from a recent phylogenomic survey distinguish families of these domains and reveal clade-specific structural features. These features suggest distinct functional roles that recur across diverse BMCs. For example, it is clear that carboxysomes independently arose twice from metabolosomes, yet the principles of shell assembly are remarkably conserved.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View