Skip to main content
eScholarship
Open Access Publications from the University of California

Structural basis for recognition of 5'-phosphotyrosine adducts by TDP2

Abstract

The DNA repair enzyme TDP2 resolves 5'-phosphotyrosyl-DNA adducts, and is responsible for resistance to anti-cancer drugs that target covalent topoisomerase-DNA complexes. TDP2 also participates in key signaling pathways during development and tumorigenesis, and cleaves a protein-RNA linkage during picornavirus replication. The crystal structure of zebrafish TDP2 bound to DNA reveals a deep and narrow basic groove that selectively accommodates the 5'-end of single-stranded DNA in a stretched conformation. The crystal structure of the full-length C. elegans TDP2 shows that this groove can also accommodate an acidic peptide stretch in vitro, with Glu and Asp sidechains occupying the DNA backbone phosphate binding sites. This extensive molecular mimicry suggests a potential mechanism for auto-regulation and how TDP2 may interact with phosphorylated proteins in signaling. Our study provides a framework to interrogate functions of TDP2 and develop inhibitors for chemotherapeutic and antiviral applications.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View