Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Non-oxidized bare copper nanoparticles with surface excess electrons in air.

Abstract

Copper (Cu) nanoparticles (NPs) have received extensive interest owing to their advantageous properties compared with their bulk counterparts. Although the natural oxidation of Cu NPs can be alleviated by passivating the surfaces with additional moieties, obtaining non-oxidized bare Cu NPs in air remains challenging. Here we report that bare Cu NPs with surface excess electrons retain their non-oxidized state over several months in ambient air. Cu NPs grown on an electride support with excellent electron transfer ability are encapsulated by the surface-accumulated excess electrons, exhibiting an ultralow work function of ~3.2 eV. Atomic-scale structural and chemical analyses confirm the absence of Cu oxide moiety at the outermost surface of air-exposed bare Cu NPs. Theoretical energetics clarify that the surface-accumulated excess electrons suppress the oxygen adsorption and consequently prohibit the infiltration of oxygen into the Cu lattice, provoking the endothermic reaction for oxidation process. Our results will further stimulate the practical use of metal NPs in versatile applications.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View