Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Stochastic thermodynamic bounds on logical circuit operation

Abstract

Using a thermodynamically consistent, mesoscopic model for modern complementary metal-oxide-semiconductor transistors, we study an array of logical circuits and explore how their function is constrained by recent thermodynamic uncertainty relations when operating near thermal energies. For a single NOT gate, we find operating direction-dependent dynamics and a trade-off between dissipated heat and operation time certainty. For a memory storage device, we find an exponential relationship between the memory retention time and energy required to sustain that memory state. For a clock, we find that the certainty in the cycle time is maximized at biasing voltages near thermal energy, as is the trade-off between this certainty and the heat dissipated per cycle. We identify a control mechanism that can increase the cycle time certainty without an offsetting increase in heat dissipation by working at a resonance condition for the clock. These results provide a framework for assessing the thermodynamic costs of realistic computing devices, allowing for circuits to be designed and controlled for thermodynamically optimal operation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View