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Using a thermodynamically consistent, mesoscopic model for modern complementary metal-oxide-
semiconductor transistors, we study an array of logical circuits and explore how their function is constrained by
recent thermodynamic uncertainty relations when operating near thermal energies. For a single NOT gate, we find
operating direction-dependent dynamics and a trade-off between dissipated heat and operation time certainty. For
a memory storage device, we find an exponential relationship between the memory retention time and energy
required to sustain that memory state. For a clock, we find that the certainty in the cycle time is maximized at
biasing voltages near thermal energy, as is the trade-off between this certainty and the heat dissipated per cycle.
We identify a control mechanism that can increase the cycle time certainty without an offsetting increase in heat
dissipation by working at a resonance condition for the clock. These results provide a framework for assessing
the thermodynamic costs of realistic computing devices, allowing for circuits to be designed and controlled for

thermodynamically optimal operation.

DOI: 10.1103/PhysRevE.111.034110

I. INTRODUCTION

While semiconductor-based computational capacity [1,2]
and efficiency [3-5] have exhibited sustained exponential
growth over the past century, continued adherence to these
trends is being disrupted as feature sizes approach atomic
length scales and energetic scales near those of thermal noise
[4-6]. At such small scales, computation has to reconcile with
unavoidable noise [7,8]. This noisy limit has been termed
thermodynamic computing [9,10] and requires the develop-
ment of new principles to achieve robust and energy-efficient
information processing [11-15]. In this paper, we explore
fundamental limitations encountered when computing in this
regime by showing how the function of realistic logical
circuits is bounded by recent thermodynamic uncertainty re-
lations [16,17].

Building upon equilibrium thermodynamics-based limits
on computing operations, such as Landauer’s limit on the
cost of bit erasure [18], stochastic thermodynamics [19,20]
provides a framework for exploring the inherent limits of log-
ical circuit operations on small scales, far from equilibrium.
Recent results like fluctuation theorems, thermodynamic un-
certainty relations, and speed limits [21-30] can be used to
strengthen bounds on computation within the thermodynamic
computing regime, provided a physically consistent, stochas-
tic model. Using a recently developed model for current
complementary metal-oxide-semiconductor (CMOS) transis-
tors [31], we study the interplay between accuracy, speed,
and heat dissipation of an array of computations performed
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near thermal energies, locating optimal trade-offs between
thermodynamic and operational costs.

This paper is organized as follows. In Sec. II, we de-
scribe the system discussed and the assumptions made. In
Sec. III, we describe the behavior of a NOT gate and how
the speed of its operation is weakly constrained by ther-
modynamics. In Sec. IV, we characterize a memory storage
device and show it efficiently converted energy into mem-
ory preservation. In Sec. V, we extend the discussion to a
clock, and in Sec. VI, we explore techniques for controlling
it to enhance its accuracy without requiring excess energy
consumption.

II. MODEL

Many conventional engineering approaches for charac-
terizing the effects of noise on circuit operation rely on
assumptions only valid near equilibrium or near specific
operating conditions [32-35], guaranteeing neither thermody-
namic consistency nor accuracy far from equilibrium [36]. To
provide a more faithful description of stochastic circuits, we
require models that obey local detailed balance and exhibit
shot noise [37], while accurately reproducing known circuit
characteristics. Recently, several stochastic models for CMOS
devices have been proposed [31,38,39], enabling the study of
noisy circuits and the associated thermodynamic costs when
operating these devices near thermal energies [40—44]. Here,
we employ one such model [31] to study systems of invert-
ers, or logical NOT gates, built from single electron tunnel
junctions operating within the classical limit [45] and using a
capacitive charging model for the readout voltage. This model
meets the three criteria emphasized above and in principle
can be parameterized directly from microscopic calculations,

©2025 American Physical Society
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FIG. 1. Characterization of the NOT gate. (a) Illustration of the
logical symbol and corresponding Markov model. (b) The probabil-
ity of Vg, with blue and green shading corresponding to different
cross voltages. The left (right) panel illustrates the dynamics of
charging (discharging) the inverter, with input voltages switched at
t = 0. (c) Trade-off between first passage time certainty and heat
dissipation for discharging and charging over a range of V4 with
o = 0.05, with the shaded region forbidden by the thermodynamic
uncertainty relation. (d) The same trade-off as in (c) for the charg-
ing process shown as a function of the probability of a correct
gate output in the steady state with varying accuracy thresholds
a € [0,0.05,0.1,0.2].

providing a link between circuit performance and the under-
lying materials properties.

As shown in Fig. 1(a), each inverter contains an N-type
and a P-type transistor, each modeled by the band energy of

an electron in the transistor ex (Vi) and ep(Vi,), respectively,
with energy levels controlled by the inverter’s input voltage
Vin. This form of ¢; is valid in the limit of high gate capac-
itance. We set ep = gVj, and ex = %qu — qVin to reproduce
the characteristic voltage transfer curve of an inverter where
q is the unit of charge [31]. The transistors are connected to
three electron reservoirs: a source connected to the N-type
transistor with reference voltage V; = 0, a drain connected
to the P-type transistor with voltage V4 > O resulting in a
cross voltage, and an output gate connected to both transistors.
While the source and drain are held fixed, the output gate volt-
age changes as electrons accumulate in the gate according to
dVy/dt = —J,(t)/C,, where J, is the current of electrons into
the gate and C, is the gate capacitance. We use C; = 10q/Vr
throughout, though we have verified nearly identical inverter
performance at C; = 5¢/Vr and C; = 15¢/V7 [45].

The system evolves stochastically according to a Marko-
vian master equation d;P(¢) = WP(¢) where P is the configu-
rational probability vector and W is the stochastic generator,
with elements W;; specifying the rate at which an electron
transitions from state j to i and P;(¢) being the probability of
being in state i at time ¢. The ratio of forward and reverse rates
satisfies local detailed balance, W;;/W;; = e PE~ED, where
E; is the energy of a given configuration and 8 = 1/kgT is the
inverse temperature defined with Boltzmann’s constant kg and
temperature 7. The rates are defined using the Fermi-Dirac
distribution where the transition rate of an electron from an
electrode j to a transistor i is Wj; = [(eP€=4V) 4+ 1)~! and
the reverse is Wj; = I' — T'(e#“=9") 4+ 1)~ where T speci-
fies the timescale for transitions and is physically set by the
resistance of the transistor-electrode interface. To ensure local
detailed balance and to avoid the Brillouin paradox, we use the
average of the gate voltage V; before and after each transition
[39,46].

We work in units of thermal voltages and times, Vi =
ksT /q and Bh, respectively, and set I'"! = 58/ with /i being
Planck’s constant. We set these constants to ensure the weak
coupling limit, in which electron transitions can be treated as
discrete hopping events [45]. For reference, at room temper-
ature Vr &~ 26 mV and & = 25 fs. In these units, the model
inverter is determined by a specification of the input voltage
Vin and cross voltage V4. While we first study the behavior of a
single inverter, by supplying the output voltage of an inverter
as the input voltage to another, more complex functionalities
can be realized, such as the memory device and clock we
subsequently consider.

III. NOT GATE

We start by considering the operation of a single inverter
or NOT gate [Fig. 1(a)], which takes an input binary signal X
and outputs its logical inverse Y according to the mapping

O» Vout < O[Vd
Y=11, Vouz({I—-a)Vs. (1)
(), otherwise

In the deterministic limit, when the input is X = 1, current
through the P-type transistor is inhibited, bringing the gate
capacitor into effective contact with only the source reservoir
with ¥ = 0. Conversely, when the input voltage is X = 0,
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current is inhibited in the other transistor and the capacitor is
connected to the drain reservoir, with Y = 1. All calculations
performed for the single inverter are obtained using numeri-
cally exact time evolution, through a Padé approximation [47]
with a truncated Hilbert space of 16C,(Vy + 4), and verified
using kinetic Monte Carlo simulations following the Gillespie
algorithm [48]. For calculations where simulation times are
not explicitly shown, we use time steps distributed logarith-
mically up to 10'° 8.

Figure 1(b) shows the time-dependent response of the in-
verter to an alternating input voltage, with the left and right
panels corresponding to setting X =0 and X = 1, respec-
tively, at t = 0. Lower cross voltages Vg require less electron
accumulation in the gate capacitor, and correspondingly fluc-
tuations in the gate output are significantly larger for lower
cross voltages. These small accumulations and large fluctu-
ations lead to response times that are orders of magnitude
faster at low cross voltages, highlighting a trade-off between
output certainty and characteristic response time. While the
steady-state statistics of the charged and discharged inverter
are symmetric, we observe that the dynamics are not. As
accentuated at larger Vg, the capacitor discharging happens
rapidly, while charging occurs relatively slowly. This differ-
ence can be understood energetically. When discharging the
capacitor, its occupation regulates the voltage in such a way
that discharging becomes energetically more favorable as the
gate empties. In the opposite direction, the accumulation of
electrons becomes more energetically unfavorable as the gate
charges, causing an exponential slowing of current into the
gate as a function of time. Additionally, this leads to the circu-
lation of electrons between the transistors and capacitor when
charging, while electrons move directly from the capacitor
out of the inverter when discharging. The functionally un-
necessary transitions caused by this circulation cause slower
operation times during the loading process.

To understand more precisely the interplay between the
thermodynamic and operational costs for the inverter, we can
employ a thermodynamic uncertainty relation [49]

2 (Tp>2 < (0)

X (51&) A
where brackets indicate a trajectory ensemble average, T, is
the first passage time to an output voltage passing the accuracy
threshold «, 6x = (x — (x)), and Q is the the heat dissipated
over a trajectory. Explicitly, 7, is calculated from an initial
state X =0 (or X = 1), and the final absorbing boundary
condition corresponds to the opposite outputY = 1 (orY = 0)
[50]. For a specific trajectory, the heat is given as

N
WXX,
Q=) In_t, 3)
k=1

kaf 1Xk

+1, 2)

where the sum is over steps in the trajectory, and x; is the state
of the system at step k [51].

The thermodynamic uncertainty relation is a general result
of stochastic thermodynamics, valid for any Markovian jump
process. It states that the certainty in the first passage time, xp,
is bounded from above by the heat dissipated over a trajectory,
0 [52]. The bound relates the minimum thermodynamic cost
for a given desired certainty in the first passage time. While

the bound was originally formulated for a system in steady
state, here we apply a finite-time version [49].

In practical terms, higher certainty in operation time allows
for processing input bits at higher rates. For some accept-
able probability of error, lower first passage time certainty
Xp Tequires waiting longer to be sure each operation has
successfully completed. Conversely, higher first passage time
certainty does not require such waiting time, which results
in lower heat dissipation due to the shorter overall operation
time.

Figure 1(c) shows how this bound depends on the cross
voltage Vy for the accuracy threshold o = 0.05. We observe
that the bound is not saturated across all V4 and for both charg-
ing and discharging, which implies that the operation of the
NOT gate may not be limited by thermodynamic constraints,
but rather by its design. Theoretically, it should be possible to
design a NOT gate that results in lower heat dissipation for
the same level of first passage time certainty, possibly using a
different architecture.

In Fig. 1(d), we vary the cross voltage and plot the trade-off
between first passage time certainty and heat dissipation, as
a function of the probability of an error in the output at long
times Perror = 1 — (Y')x—0, Where the ensemble average is over
trajectories with the specified input. We additionally show
multiple curves corresponding to differing values of the signal
accuracy threshold o and observe that loosening o moves the
curves significantly toward the bound by dissipating less heat.
This trend suggests thermodynamically optimal operation at
higher probabilities of correct outputs as o« increases, with
similar but less pronounced effects not shown for the discharg-
ing process.

IV. MEMORY DEVICE

Next, we consider a static random access memory (SRAM)
device built by coupling two inverters, as shown in the inset
of Fig. 2(a). This device operates using so-called flip-flop
circuitry, meaning it exhibits a bistable steady state, which
is a dynamical consequence of a pitchfork bifurcation. The
inverter’s state can be set by switching on V.., employing
feedback from V.| to Vi2. Here, we will focus on memory
maintenance, which can be reliably achieved at sufficiently
large cross voltages by switching both setting voltages off
and both feedback loops on. To simulate the memory device,
we perform an approximate evolution using a fourth-order
Runge-Kutta scheme acting on a truncated Hilbert space using
a time step of At = B/i/10 until a final time of # &~ 10°BA.
We additionally evaluate the dynamics using kinetic Monte
Carlo simulations.

Figure 2(a) shows the steady-state probability of observing
an output voltage Vo, = V. The requisite bistability for
memory storage arises at Vy/Vp &~ 2.5 where the cross volt-
age overcomes the effects of thermal fluctuations. Notably,
the bistability is a unique consequence of the nonequilibrium
driving, which disappears in the absence of a finite cross volt-
age. At finite Vg, the degeneracy of the steady state manifests
as a spontaneous switching of Vo, as a function of time,
illustrated in Fig. 2(a). For large V4 we observe Vyu/Vy is
localized near O or 1 for time scales much larger than indi-
vidual inverter operation time scales (1), indicating persistent
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FIG. 2. Characterization of the memory device’s behavior and
adherence to thermodynamic speed limits. (a) Probability of V,,, as a
function of V4, with crosses locating points of maximum probability
at each Vj; illustrating the onset of bistability. Example trajectories are
shown for before and after the onset of bistability. (b) Mean time for a
memory error as a function of the inverter relaxation time, controlled
by increasing Vj, as indicated on the top x-axis label.

memory storage. At long times, however, the output voltage is
stochastically inverted, corrupting the memory storage.

We define 7., as the time required for a memory device,
initialized in one of the bistable states, to experience a bit flip
memory error. Figure 2(b) shows the average time required for
a bit flip to occur () [53] as a function of the characteristic
time of a single inverter. We observe that the rate of memory
error occurrences decreases exponentially with respect to (),
thus increasing the average memory stability time by roughly
five orders of magnitude, from about 100 ns to 20 ms for
Va/Vr =21t05.

The efficiency of this memory device can be quantified
using a nonequilibrium version of the transition state the-
ory [26,54,55]. Transition state theory bounds the rate of a
transition between two metastable states using the stationary
distribution Py (V) and an uncorrelated estimate of the time
to cross a dividing surface between the two states. Equivalent
to Kramers’ theory, the rate is estimated by the probability of a
rare fluctuation, in this case, a fluctuation of the output voltage
of one of the NOT gates of the memory storage device being
equal to V3/2. Taking the dividing surface to be V,, = V4/2,

and the typical time to relax from the top of the barrier as (),
a nonequilibrium transition state theory estimate for (e ) is

Pss(vout/vd < Ol)
Pss(Vout/Vd = 1/2)’

which is shown in Fig. 2(b). Here, the steady state has been
evaluated numerically with o = 0.4, but because the time
scale for crossing the barrier is significantly larger than re-
laxation times within each well, the results are similar for
o € [0, 1/2]. The nonequilibrium transition state theory pro-
vides a very accurate estimate of the memory time, reflecting
the likelihood of observing a fluctuation of Vo, = 1/2 as
becoming exponentially unlikely with increasing Vg in accord
with recent large deviation function analysis [40]. Since the
transition state theory estimate corroborates the rate of tran-
sition between the two bistable states for the potential energy
landscape at a given Vy, we conclude that the energy pumped
into the SRAM device is efficiently directed into preserving
the memory state, rather than spent on extraneous fluctuations
which would result in more frequent bit flip errors.

“

(Terr) Z (Tp)

V. CLOCK

An uneven number of inverters coupled sequentially in a
ring creates a system with a frustrated steady state, because all
inverters cannot simultaneously output the logical inverses of
their inputs. This frustration causes cyclic oscillations, whose
period is controlled by inverter operation times, making the
device operate as a clock under deterministic conditions and
providing an example of circuitry with nontrivial functional-
ity. To simulate the dynamics of such a clock, we perform
kinetic Monte Carlo simulations. We define the time for the
clock to undergo a single cycle 7. as the time for the output,
Y, to cycle from 1 — « to « and back again to 1 — «, using
o = 0.4. Example trajectories are shown in Fig. 3(a). All
results are averaged over simulations containing at least 50000
clock cycles.

In Fig. 3(b), we show the output voltage autocorrelation
function Cy, v.(t) = (6V;(0)8Vi(t)), as a function of time and
cross voltage. At low cross voltages, the three output voltages
evolve nearly independently, with Cy, y,(¢) revealing expo-
nential correlations. Above V4 &~ 3V persistent oscillations
emerge but are damped by the stochasticity of the evolution.
We find a maximal persistence in the autocorrelation function
oscillation at V4 & 7Vg, where the clock undergoes approx-
imately 3.5 cycles. In this region, oscillations are persistent
for long times and the fluctuations in . are small relative to
the mean cycle time. Above V4 & 10Vy, the autocorrelation
exhibits oscillation for only half of a cycle because, while
oscillations are persistent for long times, the fluctuations in
7. are large relative to the mean cycle time as anticipated from
Fig. 1(c) and the single NOT gate. In this regime, we find
the cycle time to be inversely proportional to voltage output
amplitude, which evolves stochastically.

We define the certainty in the cycle time as x. =
V{te)?/(872), and plot this for V4 € [1Vq, 20Vr] in Fig. 3(c).
The red dashed line indicates where the cycle time’s fluc-
tuations are equal to its mean, above which we find a
narrow range of cross voltages where there is reliable cycling.
The first passage time thermodynamic uncertainty relation
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FIG. 3. Adherence to thermodynamic bounds of the logical
clock. (a) Example trajectories at Vy = [2Vr, 7V, 12V¢], with each
curve representing how the output voltage of one of the inverters
evolves. (b) Rescaled voltage autocorrelation function Gy (t) =
Cy,v;(t)/Cy,v,(0) as a function of applied cross voltage. (c) The
certainty in clock operation time . (blue squares) as a function of
average clock cycle time (z.) (bottom axis) and applied cross voltage
(top axis), with the shaded regions indicating the forbidden regions
from the uncertainty relations. The red dashed line indicates where
()2 = (872).

expressed in Eq. (2) can be applied to give an upper bound
on this quantity

(@ _ ()

Xc (8‘[3) X ZqVTv

(&)

where (Q) is the average heat dissipated over a cycle. As in
the single NOT gate, t. measures the time to reach a specific
state of the gate capacitor.

Similarly, the dissipation-time uncertainty relation [24]
relates the rate of heat dissipation with the mean time to
complete a process. It can be applied to the clock cycle time
to yield a lower bound,

L (6)

where (Q) is the average rate of heat dissipation in the steady
state.

A 4
A
Q X
~ A
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FIG. 4. Improvement in reliability of the logical clock cycle time
with external control. (a) Control mechanism, where the input signal
is mixed between the output of the rightmost NOT gate V5 and the
external sinusoidal controller. (b) Certainty in clock operation time
Xc as a function of mixing ratio of signal from V; or the external
controller. (c) Certainty in clock operation time x. as a function of
the frequency of the external controller.

Figure 3(c) exhibits the upper (green circles) and lower
bounds (orange triangles) as shaded regions. The upper bound
is best saturated when . is maximized around Vy & 3Vr. This
occurs for a large enough cross voltage that the coupled invert-
ers exhibit bistability, but not so large that the fluctuations in
the time to charge or discharge each gate are larger than the
overall cycle time, preventing reliable cycle behavior.

VI. CLOCK CONTROL

To expand the range of reliable cycle times, we propose a
simple control mechanism acting on the three-gate circuit. In
Fig. 4(a), we show a schematic diagram: we insert a sinusoidal
oscillator yielding a voltage

v, 2 v,
Vo= Dan (L) Y %)
2 Te 2

whose frequency f we can control with respect to the clock
cycle time t.. The signal into the leftmost inverter in the
circuit is then given by a linear combination of the output of
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the rightmost inverter V3 and the external sinusoidal oscillator
Vin :rVext+(1 —F)V3, (8)

where r € [0, 1] denotes the mixing ratio. Here, r = 0 denotes
an undriven system with V;, = V3, and r = 1 denotes a fully
driven system with signal completely from the sinusoidal os-
cillator, Vi, = Vex.

Although this controlled system does not satisfy a TUR
because it is not time homogeneous, we can still use the
cycle time precision y. defined previously as a metric for
the efficiency of the clock. We find that this simple control
mechanism can improve the reliability of the clock cycling in
Fig. 4(b). At low driving voltage (V4 = 2V, green circles), the
fluctuations in the signal are large enough that external control
has little effect. With sufficiently high driving (Vg = 6Vr, pur-
ple triangles), however, we see that precision improves with
increasing contribution from the oscillator from left to right.
All data in this figure were generated with oscillator frequency
equal to 1/(z.).

In Fig. 4(c), we vary the frequency of the oscillator relative
to the average cycle time (z.) of the uncontrolled circuit for a
fixed ratio of r = 0.5. As before, the external controller has
no effect at low driving voltage Vy. At higher driving, the
clock precision is maximized when the oscillator frequency is
slightly lower than 1/(z.), which we attribute to the oscillator
acting roughly on resonance with the natural frequency of the
circuit. The distribution of . is asymmetric, so its average
(t.) is slightly higher than the peak of the distribution. Above
and below the natural frequency 1/(z.), the external oscilla-
tions act functionally as noise, to which the system responds
unfavorably.

VII. CONCLUSION

We have used a Markovian model for realistic logical in-
verters in the regime of thermodynamic computing to explore
the interplay between operating characteristics, like accuracy
and time, and thermodynamic properties, particularly heat
dissipation. Our results demonstrate the theoretical limits of
CMOS circuits using bounds derived from stochastic thermo-
dynamics. As we have shown, this provides a framework for
simultaneously exploring the fundamental behavior of noisy
computational circuits, characterizing their optimality, and
using the gained insight to propose more efficient operating
procedures and circuits. We expect this work will provide a
foundation for future work toward understanding and design-
ing efficient thermodynamic computers. Current techniques
should allow for the improvement of thermodynamic effi-
ciencies by adapting principles from optimal control theory
to operational control schemes [56—63] and by exploring the
effects of circuit layout [14]. To extend this approach to larger
circuits, more scalable simulation techniques, such as tensor
network methods [64—68], can be adapted.
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