Skip to main content
eScholarship
Open Access Publications from the University of California

Measurement of the B8 solar neutrino flux using the full SNO+ water phase dataset

Abstract

The SNO+ detector operated initially as a water Cherenkov detector. The implementation of a sealed cover gas system midway through water data taking resulted in a significant reduction in the activity of Rn222 daughters in the detector and allowed the lowest background to the solar electron scattering signal above 5 MeV achieved to date. This paper reports an updated SNO+ water phase B8 solar neutrino analysis with a total livetime of 282.4 days and an analysis threshold of 3.5 MeV. The B8 solar neutrino flux is found to be (2.32-0.17+0.18(stat)-0.05+0.07(syst))×106 cm-2 s-1 assuming no neutrino oscillations, or (5.36-0.39+0.41(stat)-0.16+0.17(syst))×106 cm-2 s-1 assuming standard neutrino oscillation parameters, in good agreement with both previous measurements and standard solar model calculations. The electron recoil spectrum is presented above 3.5 MeV.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View