- Main
Deep Reinforcement Learning for Mitigating Cyber-Physical DER Voltage Unbalance Attacks
Published Web Location
https://doi.org/10.23919/acc50511.2021.9482815Abstract
The deployment of DER with smart-inverter functionality is increasing the controllable assets on power distribution networks and, consequently, the cyber-physical attack surface. Within this work, we consider the use of reinforcement learning as an online controller that adjusts DER Volt/Var and Volt/Watt control logic to mitigate network voltage unbalance. We specifically focus on the case where a network-aware cyber-physical attack has compromised a subset of single-phase DER, causing a large voltage unbalance. We show how deep reinforcement learning successfully learns a policy minimizing the unbalance, both during normal operation and during a cyber-physical attack. In mitigating the attack, the learned stochastic policy operates alongside legacy equipment on the network, i.e. tap-changing transformers, adjusting optimally predefined DER control-logic.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-