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Cyber-Physical DER Voltage Unbalance Attacks

Ciaran Roberts†, Sy-Toan Ngo†, Alexandre Milesi†, Anna Scaglione?, Sean Peisert†, Daniel Arnold†
†Lawrence Berkeley National Laboratory {cmroberts,sytoanngo,amilesi,sppeisert,dbarnold}@lbl.gov

?Arizona State University ascaglio@asu.edu

Abstract— The deployment of DER with smart-inverter func-
tionality is increasing the controllable assets on power distri-
bution networks and, consequently, the cyber-physical attack
surface. Within this work, we consider the use of reinforcement
learning as an online controller that adjusts DER Volt/Var and
Volt/Watt control logic to mitigate network voltage unbalance.
We specifically focus on the case where a network-aware
cyber-physical attack has compromised a subset of single-phase
DER, causing a large voltage unbalance. We show how deep
reinforcement learning successfully learns a policy minimizing
the unbalance, both during normal operation and during a
cyber-physical attack. In mitigating the attack, the learned
stochastic policy operates alongside legacy equipment on the
network, i.e. tap-changing transformers, adjusting optimally
predefined DER control-logic.

I. INTRODUCTION

The proliferation of distributed energy resources (DER) in
electrical distribution systems is causing a fundamental shift
in how these networks are operated. Historically, these net-
works had minimal controllable devices and exhibited largely
predictable time-varying demand profiles. This, however, is
changing with the increase in customer-owned DER. This
increase in controllable devices, coupled with a shifting re-
source ownership model, presents new challenges in reliably
operating our electrical power networks, particularly in the
context of cyber-physical security [1], [2].

Residential DER, in particular, are unique when it comes
to cyber-physical security. These controllable devices are
disrupting the traditional resource ownership model in that
they are neither utility owned nor directly controlled. Rather,
many manufacturers and/or aggregators remotely control
large populations of these devices via cellular networks,
customers’ Wi-Fi routers, or wired internet connections [3].
This makes ensuring the integrity of commands signifi-
cantly more difficult and presents a new attack vector for
adversaries seeking to disrupt distribution grid operations.
A single breach into the network of a single manufacturer
and/or aggregator could result in a rollout of malicious DER
controller settings to an entire DER fleet [3].

Within this work, we adopt a purely physics-based ap-
proach for the mitigation of cyber-physical attacks on DER.
That is, the proposed approach only relies on locally sensed
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electrical measurements, rather than information about the
communication network. We build upon our previous work
[4], focused on three-phase DER, balanced networks and
voltage oscillatory behavior, by considering the case where
an adversary seeks to create a network voltage unbalance
(VU) by exploiting standardized smart inverter functionality
and the single-phase nature of residential DER. Such an
attack may seek to trip VU relays and/or cause sensitive
equipment to trip offline [5]. Similar to [4], we assume
that the adversary has already gained access to a subset
of network DER and seeks to maliciously re-configure their
control logic to disrupt distribution grid operations.

VU is one of the main power quality concerns for dis-
tribution utilities, with standards and/or requirements es-
tablishing VU limits [6], [7]. Historically, the major cause
of VU has been the unequal distribution of single-phase
loads within a three-phase distribution network [5]. Recently,
however, the addition of single-phase residential photovoltaic
(PV) generation had further raised the level of concern [8].
Previous work has examined VU in low-voltage networks,
primarily due to inherent unequal load distribution [9]–[11].
The authors in [9] explore dynamically switching single-
phase residential customers between phases, via static trans-
fer switches, in order to minimize VU. The authors in [10]
propose a secondary control loop at the inverter level for VU
compensation in islanded microgrids, while in [11] a parallel
positive- and negative-sequence control loop for DER VU
mitigation is presented. These proposed solutions require
either extensive communication and switching capabilities
[9] and/or redesigning the control loops of DER [10], [11].

This work differs in that we seek to control residential
DER, subject to existing minimal control requirements cod-
ified in IEEE 1547 [12], to mitigate VU. We are particularly
focused on the case where an adversary has gained control
of a subset of the DER and seeks to exploit these aforemen-
tioned minimal control requirements to cause an abnormally
large and disruptive VU. We consider the application of
Deep Reinforcement Learning (DRL) for learning an online
controller that re-dispatch the Volt/Var (VV) and Volt/Watt
(VW) settings of single-phase residential PV inverters. The
controller is trained offline through extensive simulation and
deployed in a distributed manner, where local communication
between neighbors is required to estimate VU.

Reinforcement learning (RL) has been gaining increasing
attention in recent years, including in power systems, for
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Agent

State: st ∈ S, st ∼ P
Reward: rt ∈ R

Action
at ∈ A, at ∼ π(at|st)

Fig. 1: Reinforcement learning loop.

determining control policies for highly complex non-linear
systems. In [13], the authors explored the use of DRL for
optimal energy management among grid-connected micro-
grids. Deep Q-Network (DQN) learning, a RL algorithm
that combines Q-Learning with deep neural networks, was
employed in [14] to control both generator dynamic braking
and load shedding in the event of a contingency to ensure
post-fault recovery. In [15], the authors use a DQN network
to learn an optimal policy for capacitor bank switching.
In [16], a deep deterministic policy gradient (DDPG) RL
agent is used to co-ordinate DER and directly modulate
active and reactive power to regulate the grid voltage during
normal operations. This work further examines the use of
DRL for determining optimal control policies, with particular
emphasis on mitigating the effects of cyber-physical attacks.

The remainder of the paper is organized as follows.
Section II gives a brief introduction to DRL and the terms we
use throughout the paper. Section III gives an overview of the
power system models used in the study. Finally, Section IV
presents the results and Section V summarizes some of the
key conclusions.

II. BACKGROUND ON REINFORCEMENT LEARNING

Reinforcement learning refers to an area of machine
learning where the goal is to determine, through train-
ing, the optimum policy for a decision-maker (called the
agent) that maximize a cumulative expected reward while
choosing actions that modify the stochastic environment.
The interaction between the agent and the environment is
depicted in Fig. 1. In its basic instantiation, RL is a Markov
Decision Process (MDP), whose formal definition includes
the following elements:
• A state space S;
• An action space A, including all actions the agent can

perform;
• A state transition function P : S × A × S → [0, 1],

indicating the probability of transitioning to state st+1

when an action, at, is taken at state st;
• A reward function R : A×S ×S → R, specifying the

reward, r, the agent receives when action a is taken in
state s, and the environment transitions to state s′;

• A discount factor, γ ∈ [0, 1], weighting the value
of future rewards in the expression of the expected
discounted reward J(π) = Eπ

[∑T
t=0 γ

trt

]
, with T is

the end of the optimization horizon (possibly infinite).
The goal of the agent is to learn a policy π(a|s) (deter-

ministic or stochastic) mapping the state, st, onto optimal
actions, at, that maximize the expected cumulative environ-
ment reward over a given time horizon. The policy is derived

from successive interactions with the environment, yielding
rewards, rt ∈ R, dependent on the actions taken, at ∈ A,
at a given state, st ∈ S. As the figure shows, at state st,
the agent generates action at from π(at|st). Applying at
causes the environment to transition to state st+1 which
subsequently generates a reward rt given to the agent. The
tuple (st, at, rt, st+1) serves as input to the agent which uses
the information to update π(a|s) to maximize the discounted
reward J(π).

A. Deep Reinforcement Learning

Classical RL presents a number of problems. The first
challenge is to train a policy to apply to environments with
high dimensional continuous action and/or state spaces [17].
The remedy is to discretize theses action and/or state spaces
first. Unfortunately, due to the curse of dimensionality, this
results in a combinatorial explosion in complexity and unrea-
sonable training time. Another challenge is the convergence
of RL training in the presence of noisy or incomplete data.

DRL solves these issues by leveraging neural networks
with multiple hidden layers that take agents observations
as input and output a policy indicating what is the most
advantageous action to take for the given state.

The weights of these neural networks are efficiently
learned end-to-end via gradient-based optimization to find
the best intermediate features and an optimal output policy.
This greatly reduces the need for precise feature engineering,
due to the automatic high-dimensional feature extraction of
the hidden layers. In DRL, we can use a neural network to
explicitly approximate an optimal policy distribution π over
possible actions. The agent then samples this distribution to
determine the next action, as in Policy Gradient methods.
They may also be used to approximate either a value
function, V π(s), or an action-value function, Qπ(s, a), from
gathered data, leading to an action decision based on inferred
values for all possible future states, as in DQN. The value
function, V π(s), is the expected discounted reward when
starting in state s and following the policy π, whereas the
action-value function Qπ(s, a) is defined as the expected
discounted reward when starting in state s, taking action a,
and then following the policy π thereafter.

B. Policy Gradient and PPO

Policy Gradient methods employ a policy modeled by a
neural network that is trained directly by gradient ascent on
the expected return. The most basic method, Vanilla Policy
Gradient, is simple to implement but has the drawback of
having a high gradient variance. In response, actor-critic
(AC) methods were proposed[18], where another, possibly
shared, neural network approximates the value function.

Let πθ(a|s) indicate a stochastic policy, where θ refers to
the parameters of the deep neural network, and let V πφ (s)
denote a value function approximation by a deep neural
network with parameters φ, estimating the cumulative dis-
counted reward from the current state to the terminal state.



The gradient of J(θ) is:

∇θJ(θ) = E
τ∼πθ

[
T∑
t=0

∇θ log πθ(at|st)Aπφ(st, at)

]
, (1)

where τ is the trajectory generated by πθ, and Aπφ(st, at) =
rt + γV πφ (st+1) − V πφ (st) is the advantage function esti-
mation, representing how much better taking action at is,
as opposed to following the policy π when in state st.
The policy and value function is then updated by gradient
ascent/descent:

θk+1 = θk + α∇θJ(θ), (2)

φk+1 =φk − β∇φ(rt + V πφ (st+1)− V πφ (st))
2. (3)

When the data distribution changes due to large policy
updates, the training of AC methods can be unstable. The
Trust Region Policy Optimization (TRPO) was introduced
[19] to remedy this problem by enforcing a Kullback–Leibler
divergence constraint on the size of each update. The Prox-
imal Policy Optimization (PPO) [20] of the corresponding
problem amounts to using a clipped surrogate objective,
yielding similar performance:

LCLIP(θ) = Ê
[
min

(
ρt(θ)Ât, clip

(
ρt(θ), 1− ε, 1 + ε

)
Ât

)]
,

where ρt(θ) =
πθ(at|st)
πθold(at|st)

and Ât = Aπφ(st, at)

It is intuitive that the clip operator induces more gradual
updates to the policy compared to the unconstrained gradient
descent, since the minimum between the unclipped and
the clipped objective is used, also implying that the final
objective is a lower bound on the unclipped objective [20].
The (̂.) operator over the expectation means that we compute
a Monte Carlo estimate.

PPO is a state-of-the-art method that has successfully been
used in video games [21] and robotics in simulation [22].
Within this work, we empirically found PPO to be the most
stable for the use cases considered and therefore present its
application.

Note that in many applications, including ours in this
paper, the RL agents do not get to observe the state of
the entire system, st, but rather a function of it, called the
observation, ot. Such RL settings fall in the class of Partially
Observable MDPs (POMDPs). In a POMDP, the additional
element in the model is:

• An observation transition function (also called percep-
tual distribution or emission probability) V : S×O →
[0, 1] that specifies the probability distribution of the
observation ot given the state st.

Rather than the state, the policy function in this case takes
as input the observation, i.e. the goal is to find the optimum
probability density function π(at|ot). Also in this case,
expectations are approximated via realistic Monte Carlo
simulations.

III. METHODOLOGY

Within this work, we seek to train an intelligent agent
that continuously monitors grid conditions and adaptively
adjusts the VV/VW control logic of distributed DER. This
is depicted in Fig. 2 where the agent takes as an input
an observation vector, of locally measured grid conditions,
and outputs an action that re-configures the VV/VW control
logic.

Fig. 2: DER with RL agent.

A. Modeling DER

Recent standards, such as IEEE 1547 and California Rule
21, provide guidelines that enable DER to dynamically
respond to locally measured voltage. Following these stan-
dards, smart inverters will modulate their power outputs
to ensure nodal voltages are kept within acceptable limits.
This modulation is dictated by VV/VW control logic, often
referred to as “droop” curves, which adjust the injected active
and reactive power according to piece-wise linear functions
of voltage.

Figs. 3 - 4 depict the VV and VW control functions,
fq(v̂) and fp(v̂) respectively, parameterized by the voltage
breakpoints, η1 - η5. We note that different parameterizations
of these functions exist (e.g. purely linear, or consisting of
more piece-wise linear segments), but the functions shown in
Figs. 3 - 4 reflect the dominant implementation. As shown
in Fig. 2, these functions take as input a low-pass filtered
measurement of the grid voltage, v̂t, and output an active
and reactive power setpoint, upt and uqt respectively. These
setpoints are themselves passed through a low-pass filter to
limit the ramp rate of active and/or reactive power injection
into the grid.

Under VW precedence, priority is given to the VW con-
troller to determine any required active power curtailment
before determining the VARs available (qavail). After qavail is
fixed, uqt is computed.

In the event of a cyber-physical attack, we assume that an
adversary has the capability to re-dispatch a set of voltage
breakpoints (e.g. η1 - η5) that parameterize the droop curves
in Figs. 3 - 4 for a subset of DER on the network in order
to cause VU. Within the context of this work, the remaining
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Fig. 3: Inverter Volt-VAR curve. Positive percent denotes VAR
injection.
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Fig. 4: Inverter Volt-Watt curve. Positive percent denotes watt
injection.

set of non-compromised DER can then be updated with new
parameters (η1 - η5) to re-shape their own local droop curves
to mitigate VU. The VU at bus i at time t is calculated using
(4), similar to the equation in [23]

vui,t =
max(|v̄i,t − v̄ai,t|, |v̄i,t − v̄bi,t|, |v̄i,t − v̄ci,t|)

v̄i,t
(4)

where v̄i denotes the mean measured voltage magnitude at
bus i, and v̄ai,t, v̄

b
i,t, v̄

c
i,t are the measured voltage magnitudes

on phase a, b, and c respectively.

B. Training Environment

The primary goal of the DRL controller is to mitigate
VU, particularly VU caused by DER smart inverter VV/VW
controllers due to maliciously chosen setpoints. Let the graph
G = (N ,L) represent the topology of the distribution feeder
considered, where N is the set of nodes of the feeder and L
is the set of lines. For simplicity of presentation, we assume
the presence of a VV/VW capable smart-inverter at every
node in the system, so that the total number of inverters in
the system is |N |. We suppose the set N is partitioned into
two sets, H and U , which represent the ”compromised” and
’”uncompromised” inverters respectively, where H⋃U =
N . Furthermore, we assume that U 6= ∅, i.e. we have some
controllable resources to mitigate the effects of the cyber-
physical attack.
Training: Rather than training multiple agents simultane-
ously, we adopt the following heuristics to aid convergence:

1) For agent training, we define a single agent whose
input observation vector is from a single node in the
network at time t (e.g. worst case VU or feeder head)

and whose multi-head output action, ait∀i ∈ {a, b, c},
is a deviation/offset, ∆η, from default VV/VW control
curves that apply across single-phase inverters.

2) Once a single agent has been trained, this agent is
deployed in a distributed manner and only requires
sharing information among its immediate neighbors.
This information is necessary for single phase inverters
to estimate the voltage unbalance and determine the
output action.

3) Rather than optimize over arbitrarily shaped VV/VW
curves, we optimize over the deviation, i.e. a = ∆η,
from the default parameters defining the curves in Figs.
3 - 4. We assume that this default parameterization
is determined by an upper-level optimization and cor-
responds to desirable grid operating conditions. An
example of an action is shown in Fig. 5. The action
range is from -0.1 pu to 0.1 pu around an inverters
default VV/VW curve, with the action space being
discretized into k bins.

4) New parameterizations of VV/VW functions will be
chosen so that measurement and power injection dy-
namics evolve on a faster timescale. This choice will
preserve the Markov property between actions taken
by the RL controller.

V

% available VARs

η2

η3

100%

η1

-100%

η4

RL Agent Action
∆η

Fig. 5: Action example.

Observation: The observation vectors oi,t, i ∈ U at each RL
agent (i.e. the input to the neural network that learns the
optimum policy π(a|o)), consist of:

1) vut: An estimation of the VU at time t
2) qavail, nom

t : the available reactive power capacity without
active power curtailment.

3) aa
t−1, ab

t−1, ac
t−1: one-hot encoding of the previous

action taken by the agent across each phase.
4) va

t , v
b
t , v

c
t : voltage phase measurements at time t

During the training of the agent, the VU estimation
and voltage measurements will be from a specific node of
interest, e.g. worst case VU, and qavail, nom

t will be the average
value across all uncompromised inverters. When the agent is
deployed in a distributed manner, the VU estimation and
voltage measurements will be form the nearest three-phase
node.

Reward: At a time t, the reward function, rt(at, ot) for



our single agent in training is:

rt =−
(
σu||vut||∞ +

∑
i∈{a,b,c}

σa1ait 6=ait−1
+

∑
i∈{a,b,c}

σ0‖ait‖2 +
1

|U|

|U|∑
j=1

σp

(
1− pj,t

pmax
j,t

)2)
.

(5)

The first term seeks to minimize the maximum VU, ||vut||∞,
over all nodes in the network; the second term penalizes
configuration changes on inverters; the third component en-
courages the agent to use the default inverter configurations
in the absence of VU and the final component penalizes any
active power curtailment. We penalize the agent for deviating
from its default parameterization as we assume that this
default paramaeterization was determined by some higher-
level optimization under normal grid conditions. Therefore,
in the absence of any abnormal VU, we would like our
agent to remain close to these default parameterizations.
The reward in (5) penalizes the agent for the maximum
VU across the entire network. For networks with known
vulnerable equipment, (5) could instead penalize the VU at
those specific nodes.

IV. RESULTS

A. Experiment setup

We conduct experiments on an IEEE 37-bus feeder with
all load buses having a peak active power generation of
100% of the nominal load with an additional 10% inverter
over-sizing for reactive power headroom. The agent trains
in environments of 700 one-second timesteps in OpenDSS.
Load, solar generation, percentage of the compromised in-
verters, and the phase the voltage regulator monitors are all
randomized at environment reset to create rich scenarios for
the agent to train. The voltage regulator interacts with the
RL agent through the system voltages. That is, should the
action of the agent push the voltage outside the deadband
of the regulator, the regulator will begin a countdown timer
and actuate if the voltage does not re-enter its deadband. At
a specific time in the simulation, the attacker controls 10%
to 40% of all inverter capacity in the power grid to create a
voltage unbalance.

The agent is allowed to translate the VV/VW curves
(offset action) of the uncompromised single-phase inverters
to minimize voltage unbalance. Within this experiment we
discretized the action into k = 21 bins. This was chosen
to balance the granularity of control with the increase in
training time. The reward weights, σ, were chosen so that
the penalty for a 1% voltage unbalance was an order of
magnitude more than the penalty for taking an action. Within
this range, hyper-parameter tuning was done to tune σ to
achieve what was deemed satisfactory behavior. Fig 6 shows
the mean and standard deviation of the total reward over 10
runs for the experiment considered.

Fig ?? shows the baseline case in the morning caused
by 30% of the connected DER becoming compromised with
no further action taken to minimize the VU. At t = 200s,

the attacker maliciously re-configures the VV/VW of the
compromised inverters to create a VU within the network.

Fig. 7 shows the behavior of the trained RL agent with
active control for the same case. We see that prior to the
attack the agent takes an action to minimize the inherent
VU in the system due to unequal load distribution. After the
attack, the agent action moves the VV/VW curve of phase B
to lower the voltage on phase B and reduce the VU. Due to
the low voltage on Phase A, the inverter is already operating
in the saturation region of its VV curve and injecting its
maximum available reactive power. Therefore, the reward is
maximized by the agent taking no action on this phase. The
RL agents are applied in a distributed manner, i.e., each agent
receives a different local observation, and, correspondingly,
may take a different action. We see this manifest itself in
Fig. 7 where a subset of agents on Phase B take a different
action at t ≈ 320s due to a change in their local observation
vector.

Fig 8 and 9 show the behavior of the agent around
midday and in the morning respectively with 40% of the
connected DER becoming compromised. The scenarios differ
in the nominal available reactive power without active power
curtailment. For the attack considered in Fig 8 we can see
that the agent significantly reduces the VU and keeps it under
2%. In Fig. 9, however, we observe that a subset of the
agents exhibit an oscillatory action. This oscillatory action
behavior may be attributed to both the severity of the attack
as well as the training approach adopted, where a single agent
was trained to minimize the worst case VU. Although the
training exhibited stable convergence, once these agents were
deployed in a distributed manner the disparate observation
vectors resulted in unexpected behavior. Future work will
seek to increase the number of output action heads, where
each output action head controls a cluster of DER within
a distribution network [24]. This will result in a more
network-aware optimal policy while keeping training time
computationally tractable.

0 50 100 150 200 250 300

−4

−2

·104

epochs
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w
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d

Fig. 6: Average training reward. The band represents the standard
deviation over 10 runs.

V. CONCLUSIONS

This paper has proposed a reinforcement learning ap-
proach for mitigating voltage unbalance, specifically due to
maliciously re-configured smart inverter settings. We utilize
DRL to learn optimal policies for online re-configuration
of single-phase VV/VW functions to minimize VU. The
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Fig. 7: 30% DER VU attack at 9 A.M

proposed approach successfully mitigated VU for the ma-
jority of cases considered. However, it was observed that
at higher levels of compromised DER, a subset of agents
exhibited oscillatory behavior in their action output. This
was attributed to the training of a single policy that applied
across all inverters. Future work will seek to cluster inverters
within a network and determine a network-aware optimal
policy that is dependent on the location of the DER within
the feeder and understand the network sensitivity of the
resultant trained agents. Additionally, we will investigate the
incremental performance gain from having individual offsets
for each of the VV and VW droop curves as well as continue
to expand the library of attacks considered.
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APPENDIX

Hyperparameter Value
α (learning rate) 1× 10−4

γ (reward discount factor) 0.5
λ (GAE parameter) 0.95
ε (PPO clip param) 0.1
batch size 500
activation function tanh
network hidden layers dense (64, 64, 32)
σu (unbalance penalty) 50000
σa (action penalty) 50
σ0 (deviation from default parameterization) 75
σp (penalty for curtailing active power) 100
action range −0.1 pu to 0.1 pu
k (discretization of action range) 21

TABLE I: Hyperparameters of the network, training and reward




