Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

A Classification Tool for Differentiation of Kawasaki Disease from Other Febrile Illnesses

Abstract

Objective

To develop and validate a novel decision tree-based clinical algorithm to differentiate Kawasaki disease (KD) from other pediatric febrile illnesses that share common clinical characteristics.

Study design

Using clinical and laboratory data from 801 subjects with acute KD (533 for development, and 268 for validation) and 479 febrile control subjects (318 for development, and 161 for validation), we developed a stepwise KD diagnostic algorithm combining our previously developed linear discriminant analysis (LDA)-based model with a newly developed tree-based algorithm.

Results

The primary model (LDA) stratified the 1280 subjects into febrile controls (n = 276), indeterminate (n = 247), and KD (n = 757) subgroups. The subsequent model (decision trees) further classified the indeterminate group into febrile controls (n = 103) and KD (n = 58) subgroups, leaving only 29 of 801 KD (3.6%) and 57 of 479 febrile control (11.9%) subjects indeterminate. The 2-step algorithm had a sensitivity of 96.0% and a specificity of 78.5%, and correctly classified all subjects with KD who later developed coronary artery aneurysms.

Conclusion

The addition of a decision tree step increased sensitivity and specificity in the classification of subject with KD and febrile controls over our previously described LDA model. A multicenter trial is needed to prospectively determine its utility as a point of care diagnostic test for KD.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View