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A Classification Tool for Differentiation of Kawasaki Disease from
Other Febrile llinesses

Shiying Hao, PhD', Bo Jin, MS', Zhou Tan, PhD', Zhen Li, BS', Jun Ji, PhD', Guang Hu, PhD', Yue Wang, BS',
Xiaohong Deng, PhD', John T. Kanegaye, MD*?, Adriana H. Tremoulet, MD, MAS®®, Jane C. Burns, MD?*,
Harvey J. Cohen, MD, PhD*, and Xuefeng B. Ling, PhD', on behalf of the Pediatric Emergency Medicine
Kawasaki Disease Research Group*

Objective To develop and validate a novel decision tree-based clinical algorithm to differentiate Kawasaki disease
(KD) from other pediatric febrile illnesses that share common clinical characteristics.

Study design Using clinical and laboratory data from 801 subjects with acute KD (533 for development, and 268
for validation) and 479 febrile control subjects (318 for development, and 161 for validation), we developed a step-
wise KD diagnostic algorithm combining our previously developed linear discriminant analysis (LDA)-based model
with a newly developed tree-based algorithm.

Results The primary model (LDA) stratified the 1280 subjects into febrile controls (n = 276), indeterminate (n = 247),
and KD (n = 757) subgroups. The subsequent model (decision trees) further classified the indeterminate group into
febrile controls (n = 103) and KD (n = 58) subgroups, leaving only 29 of 801 KD (3.6%) and 57 of 479 febrile control
(11.9%) subjects indeterminate. The 2-step algorithm had a sensitivity of 96.0% and a specificity of 78.5%, and
correctly classified all subjects with KD who later developed coronary artery aneurysms.

Conclusion The addition of a decision tree step increased sensitivity and specificity in the classification of subject
with KD and febrile controls over our previously described LDA model. A multicenter trial is needed to prospectively
determine its utility as a point of care diagnostic test for KD. (J Pediatr 2016; 1: -H).

ore effective methods for the early diagnosis of acute Kawasaki disease (KD) are required to permit timely adminis-

tration of intravenous immunoglobulin and prevention of adverse outcomes. The classic KD diagnostic criteria adop-

ted by the American Heart Association (AHA) include fever plus =4 of 5 principal clinical signs (Figure 1)." These
guidelines, although widely adopted by clinicians, occasionally fail to differentiate KD from other pediatric rash/fever illnesses.”
Moreover, despite supplementary laboratory criteria to aid in the diagnosis of patients with KD who manifest only 2 or 3 clinical
signs, these incomplete cases may still be missed by clinicians." Missing the diagnosis can lead to delayed treatment, thus
increasing the risk of developing coronary artery lesions.’

We previously applied statistical learning using clinical and laboratory test variables, and developed a linear discriminant
analysis (LDA)-based scoring system to differentiate KD from febrile controls® with a sensitivity of 92%-94% and a specificity
of 88%-89%. However, 20%-30% of subjects in either the KD or febrile controls groups remained unclassified, and the algo-
rithm performance on subjects with KD with incomplete clinical criteria was not investigated.”’

In this study, we tested the hypothesis that applying separate tree-based algorithms after the LDA algorithm would improve
the classification accuracy in differentiating subjects with KD from febrile control subjects. This novel integrated algorithm was
validated with an independent subject cohort.

Subjects with KD and febrile controls meeting inclusion criteria were identified From the 'Department of Surgery, Stanford University,

. . . . . . . Stanford; “Department of Pediatrics, University of
from the database maintained at the University of California San Diego KD California SanpDiegQ La Jolla: SRady Childrans Hospital
San Diego, San Diego; “Department of Pediatrics,
Stanford University, Stanford, CA

*List of additional members of the Pediatric Emergency
Medicine Kawasaki Disease Research Group is available

AHA  American Heart Association at www.jpeds.com (Appendix 1).

CRP  C-reactive protein Supported by the American Heart Association (to H.C.
and X.L.), Stanford University Spark Program (H.C. and

ED Emergency department X.L.), the David Gordon Louis Daniel Foundation (to J.B.),

KD Kawasaki disease the Mario Batali Foundation (J.B.), the National Institutes

. . of Health, National Heart, Lung, Blood Institute (HL69413
LAD  Left anterior descending [to J.B.]), the Hartwell Foundation (to A.T.), and the Har-
LDA Linear discriminant analysis old Amos Medical Faculty Development Program/Robert
NPV Negative predictive value Wood Jtl)hnsonl Foundation (to A.T.). The authors declare
. o no conflicts of interest.
PPV Positive predictive value
RCA Right coronary artery 0022-3476/$ - see front matter. © 2016 Elsevier Inc. Allrights reserved.
http://dx.doi.org/10.1016/j.jpeds.2016.05.060
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Figure 1. Workflow to create a 2-step statistical algorithm for distinguishing subjects with KD and febrile control subjects. LDA-
and decision-tree-based models developed based on clinical and laboratory test variables were applied in sequence to
construct a 2-step algorithm, partitioning the subjects into 3 diagnostic classifications (febrile controls, KD, and indeterminate).

PPV and NPV of 95% were achieved at each step.

Research Center. Complete demographic and clinical data
were collected prospectively on all subjects with KD and
febrile controls. A total of 1280 subjects (801 with KD and
479 febrile controls) were included in this study (Figure 2;
available at www.jpeds.com). Subjects with KD in this
study were (a) patients with fever (=38.0°C rectally or
orally) for no more than 10 days plus =4 of the 5 principal
clinical criteria, (b) patients meeting fewer criteria but with
coronary artery abnormalities (Z-score = 2.5 for left
anterior descending [LAD] and/or right coronary arteries
[RCA]) documented by echocardiography, and (c) patients
meeting <4 criteria but meeting the AHA criteria for
incomplete KD by laboratory criteria." A concomitant viral
infection by reverse transcriptase polymerase chain reaction
did not disqualify the patient as a KD subject. Every subject
was evaluated clinically by 1 of 2 expert KD clinicians and
the final assignment of a KD diagnosis was based on the
opinion of these 2 experts. Febrile control subjects were
recruited from the emergency department (ED) at Rady
Children’s Hospital San Diego. All febrile control subjects
had unexplained fever, =1 of the 5 principal clinical
criteria for KD, and had laboratory tests performed
including those commonly ordered for evaluation of KD,
which included a complete blood count with manual
differential, erythrocyte sedimentation rate, and levels of C-
reactive protein (CRP), alanine aminotransferase, and
gamma glutamyl transferase. All patients referred to the ED
for evaluation of possible KD (approximately 50% of the

2

febrile control cohort) were offered enrollment as febrile
control subjects in our study. We enrolled the remaining
febrile controls from children in the ED presenting with
fever and =1 of the clinical signs of KD, and excluded
patients who had an obvious respiratory or gastrointestinal
infection because KD would be unlikely to present in this
manner. The final diagnoses of the febrile controls were
determined by chart review by 2 expert clinicians from
prospectively collected clinical and laboratory data and
from review of microbiologic and serologic results and
subsequent clinical encounters. Only 3.8% of the febrile
controls (18 of 479) underwent echocardiography to
evaluate for possible KD.

Signed consent or assent forms were obtained from the
parents of all subjects and from all subjects >6 years of age.
The study was approved by the institutional review boards
of the University of California San Diego and Stanford Uni-
versity.

For each subject, we collected the 18 clinical and laboratory
test variables retained in the final model of the LDA-based al-
gorithm.® Clinical data included 6 clinical signs associated
with KD: illness days (temperature =38.0°C); cervical lymph
node of =1.5 c¢m; rash; conjunctival injection; extremity
changes including red, swollen, or peeling hands or feet;
and oropharyngeal changes including red pharynx, red,
fissured lips, or strawberry tongue. Laboratory test data (ob-
tained prior to administration of intravenous immunoglob-
ulin for subjects with KD) included total white blood cell
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count, percentages of monocytes, lymphocytes, eosinophils,
neutrophils, and immature neutrophils (bands), platelet
count, hemoglobin concentration normalized for age, CRP,
gamma glutamyl transferase, alanine aminotransferase, and
erythrocyte sedimentation rate. For test results that exceeded
the upper or lower limit of the test, we used the numeric value
for the limit. Subgroups of subjects with KD were defined as
having either normal coronary arteries (RCA and LAD
Z-score always <2.5), transiently dilated coronary arteries
(RCA and/or LAD Z-score =2.5 and resolving within 8 weeks
of KD onset), or aneurysms (Z-score =5.0 or dilated segment
1.5 times the internal diameter of the adjacent segment). We
performed a multivariate analysis on the clinical and labora-
tory test variables for KD and febrile controls discrimination
in our total dataset. Panels combining 18 clinical and labora-
tory test variables were evaluated and the resulting ORs, P
values, and variable effects on the final model were calculated.

Of the 1280 subjects (801 KD and 479 febrile controls), 489
(261 KD and 228 febrile controls) were from the develop-
ment cohort in our previous study’ and remained in this
study’s development cohort. The remaining 791 subjects
were assigned into 2 cohorts while maintaining the same ra-
tio of KD and febrile controls subjects across cohorts. Of the
entire cohort of 1280 subjects, 228 of 801 subjects with KD
and 287 of 479 febrile controls subjects had =1 missing value
for the laboratory variables. Missing values were imputed
among KD and febrile controls subjects, respectively, using
a method of weighted K-nearest neighbors (Appendix 2;
available at www.jpeds.com).® There were 533 subjects with
KD and 318 febrile controls for model development, and
268 subjects with KD and 161 febrile controls for model
validation. The study design is outlined in Figure 1. A 2-
step algorithm was developed using the 6 clinical and 12
laboratory test variables to stratify the subjects into 3
subgroups: febrile controls, indeterminate, and KD. The
95% positive predictive value (PPV) and negative
predictive value (NPV) for KD and febrile controls
classification were targeted at each step.

Primary Model
The previously developed KD algorithm was developed using
an LDA method, with days of fever, 5 principal clinical
criteria, and 12 laboratory test variables as input variables.
The output of the algorithm was a unique score describing
the probability of KD diagnosis for each subject.” Two cutoffs
were set to stratify these subjects into 3 classification sub-
groups: febrile controls, indeterminate, and KD," allowing
95% accuracy in both KD and febrile controls subgroups.
After applying the LDA model, 9.6% of subjects with KD
(51 of 533) and 33.0% of febrile control subjects (105 of
318) in the development cohort remained indeterminate.
The proportions of subjects with indeterminate scores, how-
ever, differed among the 4 subcohorts based on the number
of principal clinical criteria manifested by each subject. The
LDA model performed less well for subjects with fewer clin-
ical criteria, yielding indeterminate scores for 28.4% of sub-
jects with KD (29 of 102) and 43.9% of febrile controls (72 of

ORIGINAL ARTICLES

164) who manifested only 2 or 3 clinical criteria. Therefore,
an additional model was developed to improve the adjudica-
tion of indeterminate subjects based on the number of
clinical criteria present.

Secondary Model

To improve the classification of subjects in the indeterminate
group from the first analysis, we used 2-step data mining
methods to combine the advantages of multiple models to
achieve better predictive accuracy than is possible with any
individual model.” Random forest models constructed by a
set of decision trees were developed.'”'' Subjects were
divided into 4 subcohorts based on the number of KD criteria
that they manifested (Figure 1). Separate models were then
developed for each subcohort. Specifically, subjects in the
development cohort were further randomly partitioned
into 2 subcohorts (subcohort I and subcohort II). A “forest’
of 300 binary ‘trees’ was constructed using randomly
selected samples and variables (clinical and laboratory test
variables) of subcohort I. At each node, ‘trees’ were split by
choosing a split variable value producing the maximum
node separation. ‘Trees’ were constructed until each of the
terminal nodes reached a sample size of 1. Final decisions
were reached by averaging the decisions of each tree. The
derived algorithm was then calibrated with subcohort II by
setting 2 thresholds that stratified all the subjects into 3
classification subgroups (febrile controls, indeterminate,
and subjects with KD), allowing 95% PPV and NPV. The
performance of the algorithm was tested on the validation
cohort. The modeling details appear in Appendix 3
(available at www.jpeds.com).

Performance Analyses

Performance of the 2-step model was demonstrated by sensi-
tivity, specificity, PPV, and NPV. Classification of incomplete
subjects with KD and subjects developing coronary artery ab-
normalities was analyzed. Indeterminate subjects were
analyzed to explore the model limitations. Performance of
models derived with reduced numbers of input variables
(missing data) was tested to explore its robustness in KD/
febrile controls classification.

The demographic and clinical details of development and
validation cohorts are presented in Table I. Asian patients
were overrepresented among subjects with KD and
underrepresented among febrile controls, compared with
the San Diego population at large (12%). Febrile controls
had a clinically determined or culture-proven etiology for
their febrile illnesses (Table II; available at www.jpeds.
com). Viral diagnosis was established by viral culture,
direct fluorescent antibody testing, or polymerase chain
reaction assays. Viral syndrome was defined as a febrile
illness that resolved without specific treatment and for
which no specific pathogens could be identified.

A Classification Tool for Differentiation of Kawasaki Disease from Other Febrile llinesses 3


http://www.jpeds.com
http://www.jpeds.com
http://www.jpeds.com
http://www.jpeds.com

THE JOURNAL OF PEDIATRICS « www.jpeds.com

Volume W

( Table I. Demographic characteristics of study cohorts W
Development cohort Validation cohort
Characteristics KD (n = 533) Febrile controls (n = 318) P KD (n = 268) Febrile controls (n = 161) P
Age, mo, median (IQR) 29.8 (15.8, 52.0) 30.7 (15.4, 61.8) 22% 30.4 (16.8, 52.6) 45.0 (18.9, 79.1) <.001*
Males, n (%) 337 (63.2) 191 (60.1) 38" 157 (58.6) 98 (61) 69"
Race/ethnicity, n (%) <.001" 03"
African American 22 (4.1) 8 (2.5) 11 (4.1) 32
Native American 2(0.4) 0(0) 1(0.4) 0(0)
Asian 91 (17.1) 26 (8.2) 45 (16.8) 11(7)
Caucasian 120 (22.5) 83 (26.1) 72 (26.9) 45 (28)
Hispanic 175 (32.8) 124 (39.0) 84 (31.3) 59 (37)
Mixed 109 (20.5) 60 (18.9) 45 (16.8) 32 (20)
Other/unknown 14 (2.6) 17 (5.3) 10 (3.7) 11(7)
\ v

*Rank sum test.
tFisher exact test.

Multivariate Analysis and 2-Step Analyses of KD
and Febrile Controls

We compared subject with KD and febrile controls using the
Fisher exact tests for categorical variables, and ORs and likeli-
hood ratio tests for continuous variables (Tables III and IV;
available at www.jpeds.com). Each subcohort had different
statistically significant clinical variables in the univariate
analysis and independent predictors in the multivariate
analysis (Tables III and IV), supporting the need to
develop models for each subcohort separately. The impacts
of each variable to the classification decision in secondary
models were measured by the percent increase of model
mean square error owing to the permutation of the variable
values (Table V; available at www.jpeds.com).

By applying the previously derived primary LDA-based
model and the score cutoffs that achieved 95% PPV and
NPV, 90.0% of subjects with KD (721 of 801) and 57.4%
of febrile controls (275 of 479) were correctly classified;
0.1% of subjects with KD (1 of 801) and 7.5% of febrile con-
trols (36 of 479) were erroneously classified, and 9.9% of sub-
jects with KD (79 of 801) and 35.1% of febrile controls (168 of
479) were left indeterminate.

The secondary random forest models, applied to 4 subco-
horts of remaining indeterminate subjects, correctly classified
60.8% of subjects with KD (48 of 79) and 60.1% of febrile con-
trols (101 of 168). The secondary models erroneously classified
2.5% of subjects with KD (2 0f 79) and 6.0% of febrile controls
(10 of 168), and 36.7% subjects with KD (29 of 79) and 33.9%
of febrile controls (57 of 168) remained indeterminate.

The 2-step algorithm correctly classified 96.0% of subjects
with KD (769 of 801) and 78.5% of febrile controls (376 of
479; Figure 3) with targeted =95% PPV and NPV. Only
3.6% of subjects with KD (29 of 801) and 11.9% of febrile
controls (57 of 479) remained indeterminate, whereas 9.9%
of subjects with KD and 35.1% of febrile controls subjects
were left indeterminate by the original LDA model.

We compared the ability of the 2-step algorithm in terms
of sensitivity, specificity, PPV, and NPV to the use of the
AHA guidelines for KD diagnosis in the absence of echocar-
diography (Figure 4; available at www.jpeds.com). Results
showed that the algorithm had a sensitivity of 96.0% vs

4

AHA guidelines of only 72.2%. The AHA guidelines had a
higher specificity of 93.5% vs our specificity of 78.5%.
However, when it came to PPV and NPV, the AHA
guidelines and the 2-step algorithm had the same PPV
around 95%, and our NPV was 99.2% whereas AHA
guidelines had a NPV of 66.8%. Thus, use of the algorithm
was better at identifying more patients with KD and having
a better NPV for patients without KD.

Algorithm Performance in Subcohorts Stratified by
Age, lliness Day, and CRP

The diagnosis of KD in young infants can be particularly chal-
lenging. This algorithm performed well (Table VI; available at
www.jpeds.com) among subjects =6 months of age (n = 92; 69
subjects with KD and 23 febrile controls). The PPV and NPV
for these infants were both 100%. The sensitivity was 97.1%
and specificity was 87.0%. Only 2 subjects with KD (3%)
and 3 febrile controls (13%) were indeterminate. Among
subjects >6 months of age (n = 1188; 732 subjects with KD
and 456 febrile controls), the PPV, NPV, sensitivity, and
specificity were slightly lower (93.9%, 99.2%, 95.9%, and
78.1%, respectively). The indeterminate frequency of these
older subjects with KD and febrile controls were 3.7% (27 of
732) and 11.8% (54 of 456). The distribution of correctly
classified, erroneously classified, and indeterminate subjects
did not differ significantly among the 2 age groups (P = .12
by x* test). Importantly, the algorithm performed well in
different age groups including the most vulnerable age
group, namely, patients <6 months of age.

To determine the effect of duration of illness on algorithm
performance, we divided the subjects into 4 subcohorts based
onillness day (=3 days [n =251]; 4-5 days [n =435]; 6-7 days
[n =390]; 8-10 days [n = 204]) and analyzed the algorithm’s
performance for each subcohort (Table VI). PPVs, NPVs, and
sensitivities remained similar (<7% variation) among these
subcohorts. The specificity levels decreased monotonically
with illness duration from 85.7% the group of =3 days of
illness to 61.2% the subcohort of 8-10 days of illness. The
distribution of correctly classified, erroneously classified,
and indeterminate subjects did not differ among subcohorts
of illness days (P = .27 by x” test).

Hao et al
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A 17KD, 27 febrile  as febrile 12KD, 30 febrile  * febrile 29 KD, 57 febrile
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Cohort Sensitivity”  Specificity PPV and NPV and Indeterminate flggfﬁgrgf,mﬁ s Indeterminate flggsitlzrgi::'?ls
and 95% Cl and 95% CI 95% Cl (%) 95% Cl (%) KD afterstep1  afterstep 1 KD after step 2 after step 2
(%) (%) (%) (%) (%) (%)
Development 96.6 82.4 94.7 99.6 9.6 33.0 3.2 8.5
(94.6,97.9) (77.7, 86.3) (92.3,96.3) (97.6, 100)
Validation 94.8 70.8 93.7 98.3 10.4 39.1 4.5 18.6
(91.2,97.0) (63.0, 77.6) (90.0, 96.2) (93.3,99.7)
Combined 96.0 78.5 94.4 99.2 9.9 35.1 3.6 11.9
(94.3,97.2) (74.5,82.0) (92.5,95.8) (97.5,99.8)

2 With targeted 2 95% PPV and NPV

Figure 3. Diagnostic performance of the 2-step algorithm applied to the development and validation cohorts. Top, Classification
of subjects. Bottom, Sensitivity, specificity, PPV, NPV, and proportions of subjects with indeterminate scores.

In our study, there were 242 of 479 febrile controls
(50.5%) who had CRP values of =3.0 mg/dL. Of these
febrile controls, the algorithm correctly classified 72.7%
of the subjects (176 of 242), erroneously classified 12.8%
of the subjects (31 of 242), and left 14.5% of the subjects
(35 of 242) indeterminate. Of these 242 subjects, 61 ful-
filled the criteria for incomplete KD based on AHA guide-
lines. This algorithm correctly identified 42.6% as febrile
controls (26 of 61) and left 41.0% as indeterminate sub-
jects (25 of 61) requiring further evaluation. For the 237
febrile control subjects who had CRP of <3.0 mg/dL, the
algorithm classified 84.4% (n = 200) correctly as febrile
controls, 6.3% (n = 15) erroneously as KD, and 9.3%
(n = 22) as indeterminate. Such results demonstrate the
utility of the algorithm as a classification tool for frontline
clinicians to evaluate suspected KD when echocardiogra-
phy is not readily available.

Algorithm Performance for Subjects with
Incomplete KD

Of 801 subjects with KD, 646 had complete KD, 155 met
AHA criteria for incomplete KD with 62 showing coronary
changes (57 had transiently dilated coronary arteries and 5
had aneurysms) on the initial echocardiogram. For the 93
incomplete subjects with KD with normal echocardiograms,
the algorithm classified 80.6% (n = 75) correctly as KD, 1.1%
(n = 1) erroneously as febrile controls, and 18.3% (n =7) as
indeterminate. Compared with the original LDA model
(26.9% indeterminate), the 2-step model improved the
correct adjudication of incomplete KD by almost one-third.

Classification of KD with Coronary Artery
Abnormalities

Because the prompt diagnosis of the subset of subjects with KD
who developed coronary artery aneurysms is of paramount
importance, the model’s performance was separately evaluated
for subjects in regard to coronary artery status (Figure 5). Of
the 32 subjects with KD who were classified erroneously or
indeterminate, 26 had normal and 6 had transiently dilated

600 | ONormal coronary artery

Dilated coronary artery

400

H Aneurysm

Number of subjects

|

Correctly Erroneously Indeterminate
classified classified

Figure 5. Performance of the algorithm according to coro-
nary artery status of subjects.

A Classification Tool for Differentiation of Kawasaki Disease from Other Febrile llinesses 5
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coronary arteries (with worst Z-scores ranging from 2.66 to
4.35 for the LAD and/or RCA). Thus, the algorithm correctly
classified all 28 subjects who developed aneurysms based on
baseline clinical criteria and laboratory test results before the
echocardiography was performed. The distribution of these
28 subjects over the 3 subcohorts was shown in Figure 6
(available at www.jpeds.com). Five of these 28 subjects
manifested 2 or 3 criteria and were diagnosed by
echocardiography. In addition, 57 subjects who manifested 2
or 3 criteria had dilation of the coronary arteries (Z-
score > 2.5) and were diagnosed on this basis. The decision
support tool correctly identified 81% of subjects with
incomplete KD (50 of 62) diagnosed by echocardiographic
criteria. Thus, the decision support tool could be used on the
initial examination to improve the diagnosis of KD.

Erroneously Classified and Indeterminate Subjects
Clinical and laboratory test variables were analyzed to profile
the subjects with erroneous or indeterminate classification by
the model. Of the 32 erroneously classified or indeterminate
subjects with KD, 30 manifested =3 KD principal criteria.
Thus, the majority exhibited incomplete clinical characteris-
tics at the time that the algorithm was applied. In contrast,
70 of 103 erroneously classified or indeterminate febrile con-
trol subjects manifested =3 KD principal criteria. Distribu-
tions of the 12 laboratory test variables were compared
among the correctly classified, erroneously classified, and
indeterminate KD and febrile control subgroups (Figure 7;
available at www.jpeds.com). The subjects with KD
erroneously classified as febrile controls had laboratory test
values comparable with those of correctly classified febrile
controls. Conversely, the laboratory test values of
indeterminate subjects with KD and febrile controls were
intermediate to those of the correctly classified KD and
febrile control subjects. Adenovirus is well-known to mimic
many of the clinical and laboratory features of KD.'* For the
28 febrile control subjects with adenovirus infection
documented either by culture, direct fluorescent antibody
testing, or polymerase chain reaction in the validation
cohort, the algorithm classified 57% (n = 16) correctly as
febrile controls, 18% (n = 5) erroneously as having KD, and
25% (n = 7) as indeterminate. Such clinical and laboratory
test result patterns likely explain the misclassification by the
algorithm.

Impact of Variable Reduction in Algorithm
Performance

Because patients typically have incomplete data early in their
evaluations, we studied the effect of eliminating variables,
beginning with the least weighted (Figure 8; available at
www.jpeds.com). The frequency of certain classifications
decreased with the reduction in variable number from 18
to 3. A 9-variable algorithm including 6 clinical variables (5
KD principal criteria plus illness days) and 3 laboratory
variables (hemoglobin concentration normalized for age,
eosinophil percentage, and white blood cell count) had an
80% classification certainty rate for subjects with KD and

6
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febrile controls and 42% for incomplete subjects with KD.
In our study cohort, there were 228 of 801 subjects with
KD and 287 of 479 febrile controls with missing laboratory
values. The impact of these subjects on algorithm
performance was also explored (Appendix 2 and
Table VII; Table VII available at www.jpeds.com). Missing
laboratory data did not affect the algorithm performance
and both the negative and PPV was preserved (Table VII).

The sequential use of a primary LDA-derived algorithm to
perform initial classification and secondary decision-tree-
based algorithms applied in parallel to subcohorts of indeter-
minate cases resulted in improved classification certainty in
differentiating KD from clinically similar febrile illnesses.
The diagnosis of patients with incomplete KD criteria is
also challenging. The algorithm correctly classified 80.6%
of subjects with incomplete KD who fulfilled AHA laboratory
criteria. In contrast with the AHA algorithm, which requires
an echocardiogram as part of the evaluation, this algorithm is
intended for use at the point of care in settings where echo-
cardiography would not be readily available. The algorithm
correctly classified 80.6% of subjects with KD who mani-
fested =3 KD principal criteria and were diagnosed by echo-
cardiography. Furthermore, the algorithm correctly classified
all 28 subjects with KD who went on to develop the most se-
vere complication, coronary artery aneurysms.

There are both strengths and limitations to our study. We
enrolled well-characterized, phenotypically similar control
subjects, of whom approximately one-half were referred to
our ED specifically for evaluation of possible KD. Thus, we
used development and validation cohorts that mirror the pa-
tient population for which a classification algorithm would
be most useful. In addition, the algorithm used widely avail-
able laboratory tests coupled with easily observable clinical
signs and can be adapted as a computer- or smart phone-
based tool. Nonetheless, 3.6% and 11.9% of subjects with
KD and febrile control subjects, respectively, remained inde-
terminate. The algorithm performed less well when =3 clin-
ical criteria were present. Although subject age did not
adversely affect algorithm performance, illness day did have
an impact with a greater proportion of febrile controls
correctly identified early in the course of the illness. The algo-
rithm had a higher sensitivity but lower specificity for sub-
jects having 8 to 10 days of fever compared with those
having =<3 days of fever. The natural evolution of laboratory
values in acute KD is for the inflammatory markers to
diminish with time. Thus, by 8 to 10 days of fever, many of
the key components of the algorithm were already starting
to normalize, thus making some of the subjects with KD
look more like the febrile controls."” The goal of KD manage-
ment is to treat with intravenous immunoglobulin as soon as
the diagnosis can be established. Thus, the fact that the algo-
rithm performed well, discriminating patients with KD from
febrile controls in the early phase of their illness, makes the
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algorithm more valuable as a tool to ensure timely diagnosis
and treatment. Integration into this algorithm of additional
biomarkers that better differentiate subjects with KD and
febrile controls could help to improve its performance.
Incorporating nuanced clinical data such as limbal sparing
of conjunctival injection or perineal accentuation of rash
could also result in better diagnostic performance. Those
data were not captured for this study, however, because the
intention was to computationally capture the differences be-
tween patients to provide support for the more inexperienced
practitioner. In the absence of a diagnostic test for KD diag-
nosis, there is always a possibility that subjects were classified
erroneously. Thus, the best diagnostic tool will only be as
good as expert clinicians until the etiology of KD is discov-
ered and specific diagnostic tests can be devised. Before this
algorithm can be adopted widely, it must be evaluated as a
clinical device by the Food and Drug Administration, which
will require prospective testing in larger cohorts from
different medical centers where the “gold standard,”
including the use of echocardiography on febrile controls
subjects, is established by other experts. The detailed algo-
rithm will be made available to interested investigators
upon request. ®
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Appendix 1

Additional members of the Pediatric Emergency Medicine
Kawasaki Disease (KD) Research Group include (University
of California San Diego, La Jolla, CA; Rady Children’s Hos-
pital San Diego, San Diego, CA): Lindsay T. Grubensky,
RN, MSN, CPNP-PC, Jim R. Harley, MD, MPH, Paul Ishi-
mine, MD, Jamie Lien, MD, Simon J. Lucio, MD, Seema
Shah, MD, and Stacey Ulrich, MD.

Methods

Missing Data Handling and Its Impact on Algorithm
Performance. In our study cohort, there were 228 of 801
subjects with KD and 287 of 479 febrile controls with missing
laboratory values. Of these, 340 (142 with KD, 198 febrile
controls) were included in the development cohort, and
175 (86 with KD, 89 febrile controls) were included in the
validation cohort.

Missing data were imputed using a method based on
weighted K nearest neighbours algorithm as follows: Assume
that a subject with KD S had missing values for variable v.
The method would find other K (K = 10 in our study) sub-
jects with KD that have complete value for v, and have most
similarity to S in other N — I variables, where N is the total
number of the clinical and laboratory test variables (N = 18)
used in our study. The similarity was defined by the
Euclidean distance between 2 subjects. Weighted average
values of v in the K subjects with KD were used to estimate
the missing value of v in the subject S. The weights of each
of the K subjects were determined by its similarity to S.
The same procedure was performed for febrile controls
with missing values.

We explored the algorithm performance on subjects
without and with missing laboratory values. For subjects
without missing laboratory values, the primary LDA-based
model correctly classified 91.1% of subjects (522 of 573)
with KD and 44.3% of febrile controls (85 of 192), errone-
ously classified 13.0% of febrile controls (25 of 192), and
8.9% of subjects with KD (51 of 573); 42.7% of febrile con-
trols (82 of 192) were left indeterminate. The secondary
random forest models correctly classified 64.7% of subjects
with KD (33 of 51) and 58.5% of febrile controls (48 of
82), erroneously classified 3.9% of subjects with KD (2 of
51) and 7.3% of febrile controls (6 of 82), and 31.4% of sub-
jects with KD (16 of 51) and 34.1% of febrile controls (28 of
82) remained indeterminate. For subjects with missing labo-
ratory values, the primary LDA-based model correctly classi-
fied 87.3% of subjects with KD (199 of 228) and 66.2% of
febrile controls (190 of 287), erroneously classified 0.4% of
subjects with KD (1 of 228) and 3.8% of febrile controls
(11 of 287), and 12.3% of subjects with KD (28 of 228) and
30.0% of febrile controls (86 of 287) were left indeterminate.

7.e1
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The secondary random forest models correctly classified
53.6% of subjects with KD (15 of 28) and 61.6% of febrile
controls (53 of 86), erroneously classified 4.7% of febrile con-
trols (4 of 86); 46.4% of subjects with KD (13 of 28) and
33.7% of febrile controls (29 of 86) remained indeterminate.

The overall performance of the 2-step algorithm on sub-
jects without and with missing laboratory values is shown
in Table VII. The combined results for subjects without
missing values showed that 96.9% of subjects with KD (555
of 573) and 69.3% of febrile controls (133 of 192) were
classified correctly, 0.3% of subjects with KD (2 of 573)
and 16.1% of febrile controls (31 of 192) were classified
erroneously, and 2.8% of subjects with KD (16 of 573) and
14.6% of febrile controls (28 of 192) were classified as
indeterminate. The combined results for subjects with
missing values showed that 93.9% of subjects with KD (214
of 228) and 84.7% of febrile controls (243 of 287) were
classified correctly, 0.4% of subjects with KD (1 of 228)
and 5.2% of febrile controls (15 of 287) were classified
erroneously, and 5.7% of subjects with KD (13 of 228) and
10.1% of febrile controls (29 of 287) were classified as
indeterminate.

Compared with the results shown in Figure 3, involvement
of subjects with missing laboratory increased the
indeterminate rate of subjects with KD from 2.8% to 3.6%,
but reduced the indeterminate rate of febrile controls from
14.6% to 11.9%, leading to a reduced sensitivity (from 96.9
to 96.0%) but an increased specificity (from 69.3% to
78.5%). The positive predictive value (PPV) and negative
predictive value (NPV) remained at similar levels (PPV
decreased by 0.3% and NPV increased by 0.7%).

Methods

Modeling Procedures of Random Forest Model. In
modeling step I, subjects in the development cohort were
further randomly partitioned into 2 subcohorts (subcohorts
I and IT) with equivalent sizes for model training [in step (I)]
and calibration [in Step (II)]. Assuming there were N; sub-
jects (S;,i =1,2,...N;) with M clinical and laboratory test
variables (fj;,j = 1,2,...M) in subcohort I, each subject S;
in subcohort I can be expressed as ((f;,y:),i = 1,2,...Ny)
where f; is the M-dimensional vector for the subject S; and
y; is the clinical outcome to be predicted (0 for KD and 1
for febrile controls). A “forest” of 300 forecasting decision
trees was developed using the data in subcohort 1. Specif-
ically, each tree was developed using randomly selected
63.2% of the N; subjects and one-third of the M variables.
At each node, the tree was split by choosing a split variable
value producing the best split. The maximum size of each
terminal node was 1. The final predicted score T was

an average of decisions on each tree. That Iis,
300 .
T(Si) = 55001 Tes i =1, ...Ny.
Hao et al
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In modeling step II, the predictive scoring threshold was
calibrated on subcohort II to create a risk measure for an in-
dividual subject. Applying the step (I) model to each subject
S; in subcohort II, the derived predictive scores
T(S;), i=1,...,N, were ranked. For each value of T, we
calculated the PPV and NPV for KD and febrile control clas-
sifications as follows:

PPV = f(T) = zz:l(T(Si) —T)J(S)) f:l(T(S,») —T)

NPV = f(T)

= Hr T - I) [ S AT - 7))

i=1

1 x>0 1 xeKD
where. I(x) = {O other} J(x) = {0 xXeFC }

In this way, we had a mathematic function mapping pre-
dictive values to PPV and NPV (ie, each subject was assigned
a PPV and a NPV to estimate the risks of being a KD and

ORIGINAL ARTICLES

febrile control with the given score). The 2 scores mapping
to 0.95 PPV and NPV were selected as the cutoffs. We ob-
tained 2 thresholds T}, and T, from this mapping.

KD subgroup:

T(S)>T,

Indeterminate subgroup:

T,<T(S)<T,

Febrile controls subgroup:

T(S:)<T,

In modeling step III, after calibration, the model’s perfor-
mance was tested using the validation cohort, assessing the
model and calibration values derived in step (I) and (II).
Again we applied the step (I) model to each subject S; in
the validation cohort to derive the predictive scores
T(S:),i =1,...,N3 and determined the subgroup each sub-
ject belonged to according to the PPV and NPV score map-
ping constructed in step (II), so as to drive the decision for
all subjects.

A Classification Tool for Differentiation of Kawasaki Disease from Other Febrile llinesses 7.e2
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1348 patients
(KD=848, febrile controls=500)
UCSD KD Research Center
1989-2014
49 patients 1299 patients
(KD=41, febrile controls=8) (KD=807, febrile controls=492)
lliness days > 10 Iliness days < 10
Excluded:
19 patients (KD=6, febrile =13)
controls
with missing data for KD
principal criteria
Assessed
1280 patients
(KD=801, febrile, =479)
controls
Development Validation
851 patients 429 patients
(KD=533, febrile =318) (KD=268, febrile =161)
controls controls
Figure 2. Cohort construction of retrospective development and validation.
MW 2-step algorithm [ AHA guidelines without echocardiography
L100] 960 - 94.4 94.9 99.2
£ 22 ]
] 14
S 801 72.2 m g1 211
= 66.8 ‘g H Development [ Validation
g 60 =10 1
) 2 8
s B
£ 40 ] 5 g |
E g 3/85 16/431
£ 20 g 4 7/215
a g 2 ] .
9 <
o
0 - 0
Sensitivity Specificity PPV NPV

Figure 4. Comparison of subjects with KD and febrile con-
trols differentiation performance on the overall cohort using
the proposed 2-step algorithm and AHA guidelines at the
absence of echocardiography, respectively.

Sub-cohort manifesting Sub-cohort manifesting Sub-cohort manifesting

2 clinical signs

3 clinical signs

4 or 5 clinical signs

Figure 6. Distribution of the number of subjects who devel-
oped aneurysms over the 3 subcohorts in the development
and validation cohorts, respectively.
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Figure 7. Distribution of each of the 12 laboratory test variables under all 6 classifications (I-VI) by 2-step algorithm. I: Errone-

ously classified KD; Il: correctly classified KD; lll: indeterminate KD; IV: erroneously classified febrile controls; V: correctly

classified febrile controls; VI: indeterminate febrile controls. The median values of each variable were marked in black. Significant
P values (<.05 with a Wilcoxon test) between the classifications are shown.
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Figure 8. Performance of the 2-step algorithm developed with reduced number of variables. Proportions of KD, febrile controls,
and incomplete subjects with KD with certain classification were calculated under each model. An 80% classification certainty
rate was achieved with 9 variables: 5 KD principal clinical criteria, illness days, hemoglobin concentration normalized for age,

percent eosinophils, and white blood cell count.

4 N
Table II. Final diagnoses of febrile controls in the
development and validation cohorts

Development cohort Validation cohort
Diagnosis, n (%) (n=318) (n=161)

Bacterial infections

Methicillin-resistant 14 (4.4) 8 (5)
Staphylococcus aureus

Scarlet fever* 14 (4.4) 4 (3)
Staphylococcal infection 13 (4.1) 2(1)
Streptococcal pharyngitis 6 (1.9 2(1)
Cellulitis 6(1.9 0(0)
Others 16 (5.0) 14 (9)

Viral infections
Viral syndrome’ 140 (44.0) 75 (47)
Adenovirus 43 (13.9) 28 (17)
Influenza virus 19 (6.0) 7 (4)
Enterovirus 14 (4.4) 0(0)
Epstein—Barr virus 8 (2.5 3(2
Others 5(1.6) 4(3)

Both bacterial and viral infection 3(0.9 2(1)

Other/unknown’ 17 (5.3 12 (8)

\ 7

*Diagnosis of scarlet fever was based on a positive rapid streptococcal antigen test or throat
culture and a compatible rash that responded to treatment with antibiotics active against this
organism. Streptococcal serology was not consistently performed.

tViral syndrome was defined as febrile iliness without identified pathogen that spontaneously
resolved without treatment.

t0ther/unknown included mycoplasma infection (3 in the development cohort, 2 in the valida-
tion cohort), drug reaction (5 in the development cohort, 1 in the validation cohort), and un-
known diagnosis (9 in the development cohort, 9 in the validation cohort).
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4 N
Table III. Distribution of the clinical signs among subjects in subcohorts of the development cohort manifesting 1, 2, 3,

or =4 clinical criteria for KD

Clinical criteria

1 2 3 24
Febrile controls Febrile controls Febrile controls Febrile controls

Clinical signs, n (%) (n =126) KD (n =17) (n =108) P* KD (n = 85) (n = 56) P* KD (n=431) (n =28) P
Cervical lymph node 14 (11) 3(18) 12 (11) 43 10(12) 21 (38) <.001 173 (40.1) 3 (46.4) .55
Rash 91 (72) 12 (71) 86 (80) 53 71(84) 47 (84) 99 420 (97.4) 28 (100) .99
Red eyes 12 (10) 37 (34) 8 (47) 42 66 (78) 45 (80) 83 416 (96.6) 27 (96) .99
Red hands/feet, peeling 1(1) 1(6) 25 (23) 19 43 (51) 12 (21) <.001 400 (92.8) 20 (71) .001
Red pharynx, lips 8 (6) 10 (59) 56 (52) .61 65 (77) 43 (77) 99 422 (97.9) 28 (100) .99

\ S

*Fisher exact test.

4 A
Table IV. Multivariate analysis of illness duration and laboratory test variables in discriminating KD from febrile control
subjects in subcohorts of the development cohort with 2, 3, or =4 clinical criteria for KD

2 clinical criteria 3 clinical criteria >4 clinical criteria

Variables OR (95% CI) P OR (95% Cl) P OR (95% Cl) P
lliness days 1.87 (1.00-3.54) .04 1.19 (0.91-1.56) .20 1.31 (1.02-1.70) .03
Alanine aminotransferase 0.99 (0.95-1.03) .50 1.01 (1.00-1.02) .07 1.00 (1.00-1.01) 22
CRP 1.00 (0.84-1.20) 97 1.14 (1.01-1.29) 02 1.06 (0.97-1.15) 15
Eosinophils, % 0.91 (0.57-1.44) .66 1.12 (0.97-1.30) 13 1.07 (0.90-1.27) .46
Erythrocyte sedimentation rate 1.03 (0.98-1.08) 26 1.04 (1.01-1.07) 01 1.03 (1.01-1.05) .003
Gamma-glutamyl transferase 1.04 (1.01-1.08) 01 1.01 (0.99-1.02) 29 1.01 (1.00-1.02) 12
Hemoglobin normalized for age 0.49 (0.20-1.21) 11 0.78 (0.52-1.17) 21 0.84 (0.63-1.12) 23
Immature neutrophils, % 0.90 (0.73-1.12) 28 0.98 (0.91-1.07) .68 0.97 (0.92-1.02) 22
Lymphocytes, % 1.15 (0.92-1.43) 22 0.98 (0.91-1.05) 51 0.97 (0.91-1.02) 22
Monocytes, % 1.08 (0.77-1.53) 65 0.96 (0.83-1.11) 57 0.96 (0.83-1.11) 55
Neutrophils, % 1.18 (0.96-1.45) 10 0.99 (0.92-1.07) .85 0.95 (0.90-1.01) .07
Platelet count 1.01 (1.00-1.02) 25 1.01 (1.00-1.01) .03 1.00 (1.00-1.01) 74
White blood cell count 1.46 (1.10-1.96) 003 0.98 (0.86-1.11) VA 1.05 (0.94-1.18) .33

\ J

*Likelihood ratio test.
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4 N
Table V. Variable importance* in the secondary
random forest model for subcohorts of subjects
manifesting 2, 3, or = 4 clinical criteria for KD

2 clinical 3 clinical 24 clinical

Variable criteria criteria criteria
Cervical lymph node —1.00 2.45 0.00
Rash 0.00 -0.73 0.00
Red eyes 0.82 -1.38 —1.00
Red hands/feet, peeling 2.99 2.99 0.73
Red pharynx, lips —0.58 1.35 0.00
lliness days 2.46 1.61 1.80
Alanine aminotransferase -3.63 2.58 5.83
CRP 1.59 6.04 —1.05
Eosinophils, % -0.19 3.56 —-1.15
Erythrocyte sedimentation rate 5.58 7.79 1.53
Gamma-glutamyl transferase —1.45 1.67 1.14
Hemoglobin normalized for age 0.83 9.16 0.32
Immature neutrophils, % 0.15 7.21 0.71
Lymphocytes, % 1.92 0.52 1.33
Monocytes, % 219 —-0.26 —1.61
Neutrophils, % 5.76 2.76 -0.37
Platelet count 1.83 8.25 0.76
White blood cell count 6.55 0.42 2.66

\ J

*Measured by percent increase of model mean square error caused by permutation of variable

values.

1The higher the number, the greater the importance of the variable in discriminating KD from
febrile controls for each of the subcohorts based on number of clinical criteria.

Volume W

( Table VI. Performance of the algorithm on subcohorts stratified by age at onset and illness day

Indeterminate

M

Sensitivity, Specificity, PPV, % NPV, % Indeterminate febrile
Subcohorts % (95% Cl) % (95% Cl) (95% Cl) (95% Cl) KD, % controls, %
Age at onset*
=6 months (KD, n = 69; febrile controls, 97.1 (89.9-99.6) 87.0 (66.4-97.2) 100 (92.1-100) 100 (76.2-100) 2.9 13.0
n=23)
>6 months (KD, n = 732; febrile controls, 95.9 (94.2-97.2) 78.1 (74.0-81.8) 93.9 (91.9-95.5)  99.2 (97.6-99.8) 3.7 11.8
n = 456)
lliness days
=3 (KD, n = 83; febrile controls, n = 168) 95.2 (88.1-98.7)  85.7 (79.5-90.6)  89.8 (81.5-91.2)  99.3 (96.2-100) 3.6 8.9
4-5 (KD, n = 294; febrile controls, n = 141)  94.2 (90.9-96.6) 78.0 (70.3-84.5) 96.2 (93.3-98.1)  98.2 (93.7-99.8) 5.1 14.2
6-7 (KD, n = 269; febrile controls, n = 121)  97.0 (94.2-98.7)  76.0 (67.4-83.3) 95.3 (92.0-97.4) 100 (94.2-100) 3.0 13.2
8-10 (KD, n = 155; febrile controls, n = 49)  98.1 (94.4-99.6) 61.2 (46.2-74.8) 92.1 (86.9-95.7) 100 (83.3-100) 1.9 12.2

*Age at the first day of fever.
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( Table VII. Performance of the algorithm on subjects with no missing and missing laboratory values

]

Indeterminate

controls, n = 287)

\,

Sensitivity, Specificity, PPV, NPV, Indeterminate febrile
Cohort % (95% CI) % (95% Cl) % (95% Cl) % (95% CI) KD, %* controls, %*
No missing
Development (KD, n = 391; febrile 97.7 (95.7-98.9) 75.8 (67.2-83.2) 95.5 (93.0-97.3) 1(94.1-1) 2.3 9.2
controls, n = 120)
Validation (KD, n = 182; febrile 95.1 (90.8-97.7) 58.3 (46.1-69.8) 93.0 (88.3-96.2) 95.5 (84.5-99.4) 3.8 23.6
controls, n = 72)
Combined (KD, n = 573; febrile 96.9 (95.1-98.1) 69.3 (62.2-75.7) 94.7 (92.6-96.4) 98.5 (94.8-99.8) 2.8 14.6
controls, n = 192)
Missing
Development (KD, n = 142; febrile 93.7 (88.3-97.1) 86.4 (80.8-90.8) 92.4 (86.7-96.1) 99.4 (96.8-1) 5.6 8.1
controls, n = 198)
Validation (KD, n = 86; febrile 94 (87-98) 81 (71-88) 95 (84-99) 1(93-1) 6 15
controls, n = 89)
Combined (KD, n = 228; febrile 93.9 (89.9-96.6) 84.7 (80.0-88.6) 93.4 (89.4-96.3) 99.6 (97.7-1) 57 101

*The percent of subjects with KD or febrile control subjects classified as indeterminate by the algorithm.

A Classification Tool for Differentiation of Kawasaki Disease from Other Febrile llinesses
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