- Main
Surface-enhanced coherent anti-Stokes Raman scattering of molecules near metal-dielectric nanojunctions.
Published Web Location
https://doi.org/10.1021/acs.jpcc.2c01642Abstract
We discuss an experimental configuration consisting of {Au film}-molecule-{Au particle} or {Au film}-molecule-{Si particle} nanojunctions for performing wide-field surface-enhanced CARS (SE-CARS) measurements in a reproducible and controllable manner. While the allowable illumination dosage in the {Au film}-molecule-{Au particle} case is limited by the strong two-photon background from the gold, we successfully generate a detectable coherent Raman response from a molecular monolayer using the lowest reported average power densities to-date. With a vision to minimize the two-photon background and the intrinsic losses observed in all-metal plasmonic systems, we examine the possibility of using high-index dielectric particles on top of a thin metal film to generate strong nanoscopic hotspots. We demonstrate repeatable SE-CARS measurements at the {Au film}-molecule-{Si particle} heterojunction, underlining the usability of this experimental geometry. This work paves the way for the development of next-generation of chemical and biomolecular sensing assays that can minimize some of the major drawbacks encountered in fragile and lossy all-metal plasmonic systems.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-