- Main
Initial measurement of reactor antineutrino oscillation at SNO+
- Allega, A;
- Anderson, MR;
- Andringa, S;
- Askins, M;
- Auty, DJ;
- Bacon, A;
- Baker, J;
- Barão, F;
- Barros, N;
- Bayes, R;
- Beier, EW;
- Bezerra, TS;
- Bialek, A;
- Biller, SD;
- Blucher, E;
- Caden, E;
- Callaghan, EJ;
- Chen, M;
- Cheng, S;
- Cleveland, B;
- Cookman, D;
- Corning, J;
- Cox, MA;
- Dehghani, R;
- Deloye, J;
- Depatie, MM;
- Di Lodovico, F;
- Dima, C;
- Dittmer, J;
- Dixon, KH;
- Esmaeilian, MS;
- Falk, E;
- Fatemighomi, N;
- Ford, R;
- Gaur, A;
- González-Reina, OI;
- Gooding, D;
- Grant, C;
- Grove, J;
- Hall, S;
- Hallin, AL;
- Hallman, D;
- Heintzelman, WJ;
- Helmer, RL;
- Hewitt, C;
- Howard, V;
- Hreljac, B;
- Hu, J;
- Huang, P;
- Hunt-Stokes, R;
- Hussain, SMA;
- Inácio, AS;
- Jillings, CJ;
- Kaluzienski, S;
- Kaptanoglu, T;
- Khan, H;
- Kladnik, J;
- Klein, JR;
- Kormos, LL;
- Krar, B;
- Kraus, C;
- Krauss, CB;
- Kroupová, T;
- Lake, C;
- Lebanowski, L;
- Lefebvre, C;
- Lozza, V;
- Luo, M;
- Maio, A;
- Manecki, S;
- Maneira, J;
- Martin, RD;
- McCauley, N;
- McDonald, AB;
- Mills, C;
- Milton, G;
- Colina, A Molina;
- Morris, D;
- Morton-Blake, I;
- Mubasher, M;
- Naugle, S;
- Nolan, LJ;
- O’Keeffe, HM;
- Gann, GD Orebi;
- Page, J;
- Paleshi, K;
- Parker, W;
- Paton, J;
- Peeters, SJM;
- Pickard, L;
- Quenallata, B;
- Ravi, P;
- Reichold, A;
- Riccetto, S;
- Rose, J;
- Rosero, R;
- Semenec, I;
- Simms, J;
- Skensved, P;
- Smiley, M;
- Smith, J;
- Svoboda, R;
- Tam, B;
- Tseng, J;
- Vázquez-Jáuregui, E;
- Veinot, JGC;
- Virtue, CJ;
- Ward, M;
- Weigand, JJ;
- Wilson, JR;
- Wilson, JD;
- Wright, A;
- Yang, S;
- Yeh, M;
- Ye, Z;
- Yu, S;
- Zhang, Y;
- Zuber, K;
- Zummo, A
- et al.
Abstract
Abstract: The SNO$$+$$ + collaboration reports its first spectral analysis of long-baseline reactor antineutrino oscillation using 114 tonne-years of data. Fitting the neutrino oscillation probability to the observed energy spectrum yields constraints on the neutrino mass-squared difference $$\Delta m^2_{21}$$ Δ m 21 2 . In the ranges allowed by previous measurements, the best-fit $$\Delta m^2_{21}$$ Δ m 21 2 is ($$8.85^{+1.10}_{-1.33}$$ 8 . 85 - 1.33 + 1.10 ) $$\times $$ × $$10^{-5}$$ 10 - 5 $$\hbox {eV}^2$$ eV 2 . This measurement is continuing in the next phases of SNO+ and is expected to surpass the present global precision on $$\Delta m^2_{21}$$ Δ m 21 2 with about three years of data.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-